首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
BACKGROUND: The immobilized cell fluidized bed reactor and contact oxidation biofilm reactor are two common choices for high strength ammonia wastewater treatment, however, comparative study of the nitrification performance of the two reactors has not been thoroughly studied. The nitrification performance of the two bioreactors when treating strong synthetic ammonia wastewater was investigated and compared. RESULTS: Results demonstrated that the immobilized cell fluidized bed reactor had a shorter acclimation period, and possessed several advantages over the contact oxidation biofilm reactor, in the form of complete oxidation of 150–360 mg L?1 ammonia wastewater in a shorter time, higher ammonia removal rates (from 9.6 to 4.32 × 102 mgN L?1 d?1) over the temperature range 8 to 32 °C, irrespective of organic load. In contrast, a large reduction in ammonia removal was found in the contact oxidation biofilm reactor with chemical oxygen demand (COD) load. The immobilized cell fluidized bed reactor exhibited stable and high rates of nitrification in the long term. CONCLUSION: These facts demonstrated that the immobilized cell fluidized bed reactor is a suitable selection for high strength ammonia wastewater treatment. Copyright © 2007 Society of Chemical Industry  相似文献   

2.
Two types of mesoporous silica SBA-15 with different pore diameter were synthesized with an ageing temperature of 373 K and an ageing temperature of 308 K, respectively; in addition, mesoporous silica with amorphous structure was synthesized by adding organosiloxane as part of the silica source during the synthesis procedure. Mesoporous silica and conventional alumina supported cobalt oxide catalysts were prepared by incipient wetness impregnation method. These materials were characterized by FT-IR, nitrogen adsorption–desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM) and Temperature programmed reduction (TPR) techniques, and the activity of the supported cobalt oxide catalysts for deep oxidation of benzene were evaluated in a fixed-bed reactor. It seems that the pore diameter of the silica increase with the elevation of the ageing temperature. Mesoporous silica supported cobalt oxide catalysts are more active than conventional alumina supported ones. Cobalt oxide can be relatively better dispersed on the surface of mesoporous silica which has larger pore diameter and surface areas. Meanwhile, more silanol groups exist on the surface of amorphous silica, which could induce a strong interaction with the supported cobalt oxide species, leading to poor activity for benzene oxidation.  相似文献   

3.
The behaviour of a fluidized bed reactor for the catalytic oxidation of benzene to maleic anhydride has been studied following a 24 factorial design of experiments. Results stand comparison with those observed in fixed bed reactors. Yields as high as 42% are obtained. Statistical analysis of the data, using the Yates method, to establish the polynomial dependence of conversion, selectivity and yield on the operating variables (temperature, benzene/air ratio, volumetric flow of the feed, height of the catalytic bed of particles) shows that the performance of the system, for each response, can be translated to an incomplete quadratic model with only limited interactions among the variables. Although it is difficult to establish a precise correspondance of the parameters of the models to the fundamentals of fluidized bed reactors, some of the phenomenological principles of the process related to conversion and selectivity have been identified. However, such is not the case for the unusually complex yield response. The analysis of the data suggested a more refined control of the variables to elucidate the behaviour of the yield around the optimal operating conditions.  相似文献   

4.
Chaoquan Hu   《Catalysis communications》2009,10(15):2008-2012
Ultrafine Cu0.1Ce0.5Zr0.4O2−δ catalyst operated in a fluidized bed reactor was found to be very effective for complete oxidation of dilute benzene in air. The complete conversion of benzene could be achieved at reaction temperature as low as 220 °C. The mechanism of benzene oxidation over the Cu0.1Ce0.5Zr0.4O2−δ catalyst was investigated by conducting pulse reaction of pure benzene in the absence of O2 over the catalyst and the results indicated the involvement of lattice oxygen from the catalyst in benzene oxidation.  相似文献   

5.
《Catalysis communications》2010,11(15):2008-2012
Ultrafine Cu0.1Ce0.5Zr0.4O2−δ catalyst operated in a fluidized bed reactor was found to be very effective for complete oxidation of dilute benzene in air. The complete conversion of benzene could be achieved at reaction temperature as low as 220 °C. The mechanism of benzene oxidation over the Cu0.1Ce0.5Zr0.4O2−δ catalyst was investigated by conducting pulse reaction of pure benzene in the absence of O2 over the catalyst and the results indicated the involvement of lattice oxygen from the catalyst in benzene oxidation.  相似文献   

6.
Active transition metal species (Co, Cu, Cr, Ni or Mn) supported on a chemically modified silica gel are used as heterogeneous catalysts in a range of liquid phase oxidation reactions: alkyl aromatic side chain oxidations, epoxidations of alkenes and Baeyer–Villiger oxidations of linear ketones to esters and cyclic ketones to lactones. The catalyst employs metal centres bound to the silica surface via a hydrophobic spacer chain and is thus chemically robust and has a relatively high loading for a supported reagent (c 0.4 mmol g−1). The Cr version of the catalyst promotes the oxidation of ethylbenzene to acetophenone in a solvent‐free system at a rate of 5.5% h−1 (>370 turnover h−1). It is also active for the oxidation of p‐chlorotoluene and p‐xylene to p‐chlorobenzoic acid and p‐toluic acid respectively. Cyclohexene is converted to its oxide at room temperature at a rate of c 28% h−1 (c 12 turnover h−1) using either the Ni or Cu versions of the catalyst. The room temperature Baeyer–Villiger oxidation of cyclohexanone is achieved at a rate of 44% h−1 (49 turnover h−1) using the Ni‐containing catalyst. The same material also promotes the Baeyer–Villiger oxidation of linear aliphatic ketones and aromatic side chains. All the above systems use either air or molecular oxygen as the oxidant rather than peroxides or peracids. © 1999 Society of Chemical Industry  相似文献   

7.
Si-MCM-41 and Al-MCM-41 supported cobalt oxide catalysts were prepared and characterized by XRD. The surface area, pore size and wall thickness was calculated by applying BET equation and BJH method using nitrogen sorption technique. DR UV-VIS confirm the presence of cobalt oxide as isolated particle in the framework positions of the MCM-41 mesostructure. The vapour phase oxidation of isopropyl benzene with CO2-free air as the oxidant was studied over cobalt oxide supported unwashed and washed Si-MCM-41 and Al-MCM-41 catalyst. Isopropyl benzene conversion increased with increase in temperature from 200 to 300 °C, but at 325 °C it decreased. Formation of coke was noted at all the temperatures. Cumenehydroperoxide, 1,2-epoxyisopropylbenzene, acetophenone and styrene were the products observed in this reaction. Of the products cumenehydroperoxide was found to be more selective over all the catalysts. Both unwashed and washed catalysts were found to have nearly the same activity. Due to more dispersion, the active sites in the latter catalysts compensates its low cobalt oxide content in producing activity equal to the former catalysts. The study of time on stream indicated decrease in conversion due to coke formation.  相似文献   

8.
This work reports, formation of benzene from anisole via hydrodeoxygenation process using vapour phase fixed bed reactor. The surface properties of bimetallic catalysts such as textural properties, acidic, and Pt/Ni dispersion has established by various characterization techniques. The reaction was carried out at 370 and 420 °C with space velocity 3.3 & 6.6 h??1, over acidic and non-acidic supported mono and bimetallic catalysts. The optimum conversion and selectivity was observed at 420 °C and WHSV?=?3.3 h??1 for all mono and bimetallic catalysts. Pt/Ni/Al-SBA-15 acidic bimetallic catalyst shows maximum anisole conversion 59% with benzene selectivity 37% under atmospheric pressure, due to the more acidic centres and high dispersion of Pt/Ni species on the bimetallic catalyst, enhance the anisole conversion; this was proved by NH3-TPD and HR-TEM analysis. The acidic Pt/Ni bimetallic catalyst shows higher anisole conversion as compared to the mono metallic Pt/Ni catalysts and it works predominantly through demethylation and hydrogenolysis reaction pathway.  相似文献   

9.
Ignition of activated carbon particles were measured in a vertical tube reactor of 4 cm ID, where single particles fell consecutively through a gas mixture containing oxygen.

A two dimensional fluidized bed reactor 24 cm wide, 51 cm high and 2.5 cm in thickness was used for visual observation through a wide front window 24 cm × 35 cm covered with a silica glass plate 1 cm thick. Activated carbon particles were fluidized incipientiy by air, and a gas mixture containing oxygen was injected upwards into the bed through a nozzle positioned 5 cm above the distributor, forming single bubbles intermittently.

It was observed that carbon particles dispersed in rising bubbles were ignited abruptly at emulsion phase temperatures above 550°C. Experimental findings from the fluidized bed were compared with those from the tube reactor, suggesting that the igniting conditions for particles dispersed in bubbles are nearly the same as for single particles falling in the tube reactor.  相似文献   

10.
Vanadium oxide, palladium oxide and mixed Pd/V-supported on titania catalysts have been prepared and tested in the total oxidation of volatile organic compounds (VOCs). A comparative study with two different aromatic VOCs (benzene and naphthalene) has been carried out. For benzene, the mixed Pd/V-catalysts presented the highest catalytic activity. However, whilst studies with benzene led to the formation of CO2 only, the total conversion of naphthalene to CO2 was not achieved throughout the full temperature range for naphthalene conversion. A naphthalene conversion to CO2 of 99% was obtained over Pd/TiO2, V/TiO2 and Pd/V/TiO2 catalysts at 275, 325 and 300 °C, respectively. Therefore, the requirements for an effective benzene total oxidation catalyst cannot be readily extrapolated to larger polycyclic aromatic compounds, as in the naphthalene oxidation the most active catalyst from an environmental point of view is Pd supported on TiO2.  相似文献   

11.
Multiwalled carbon nanotubes (MWNTs) were synthesized on Al2O3 supported Ni catalysts from C2H2 and C2H4 feedstocks in a fluidized bed. The influence of the ratio of superficial gas velocity to the minimum fluidization velocity (U/Umf), feedstock type, the ratio of carbon in the total quantity of gas fed to the reactor, reaction temperature, the ratio of hydrogen to carbon in the feed gas, and nickel loading were all investigated. Significantly, the pressure drop across the fluidized‐bed increased as the reaction time increased for all experiments, due to the deposition of MWNTs on the catalyst particles. This resulted in substantial changes to the depth and structure of the fluidized bed as the reaction proceeded, significantly altering the bed hydrodynamics. TEM images of the bed materials showed that MWNTs, metal catalysts, and alumina supports were predominant in the product mixture, with some coiled carbon nanotubes as a by‐product. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

12.
Catalytic combustion of benzene over supported metal oxides has been investigated. The catalysts have been prepared by incipient wetness method and characterized by XRD, FT-Raman, ESR and TPR. Among supported metal oxides, CuOx, supported on TiO2 is found to have the highest activity for benzene oxidation. In addition, among the catalysts of copper oxide supported on TiO2, A12O3 and SiO2, titania-supported catalyst (CuOx/TiO2) gives the highest catalytic activity. CuOx/TiO2 (Cu loading 5.5 wt%) shows the total oxidation of benzene at about 250 °C. From the ESR and FT-Raman results, the CuO dispersed on the TiO2 surface acts as an active site of CuOx/TiO2 catalysts on the oxidative decomposition of benzene. The catalytic activity gradually increases with an increase of Cu loading on TiO2. When Cu loading reaches 5.5 wt%, the total conversion temperature is lowered to 300 °C. However, the catalytic activity considerably decreases at 7 wt% Cu loading. The catalytic activity increased with an increase of oxygen concentration but the concentration of benzene showed no difference in the benzene conversion. This result suggests that the rate determining step is the adsorption of oxygen.  相似文献   

13.
Abstract

Revolving air flow was generated by oblique holes on air distribution board in a fluidized bed dryer. Such a revolving air flow shows a large scale velocity fluctuation in radial as well as tangential directions. This turbulent flow of air can fluidize the inert particles with superior performance than vibrated fluidized bed. The revolving fluidized bed is simpler in fabrication and easier in operation. For two types of inert particles tested, 4 mm glass beads and 4 mm × 5 mm Teflon cylindrical extrudates, the volumetric heat transfer coefficients were found to increase with the liquid feed flowrate and air flow velocity but decrease with the air inlet temperature, height of static bed, and liquid concentration. The revolving fluidized bed gives an increase of volumetric heat transfer coefficient by 1 kW/m3 K, and represents a 15–25% enhancement from ordinary fluidized bed operated at a bed height of 60 mm, bed diameter of 140 mm, superficial air flow velocity of 3.5 m/s, liquid feed (Soya milk) flowrate of 20 mL/min at a concentration of 6.7%, and a temperature ranges of 80–140°C using Teflon extrudates as inert particles.  相似文献   

14.
The kinetics of the reaction of benzene with oxygen over a vanadium oxide/potassium sulphate-promoted catalyst have been studied in a differential flow reactor. Rates of oxidation of benzene to maleic anhydride, p-benzoquinone and carbon dioxide were measured at temperatures from 350 to 400°C, at benzene concentrations from 2.0 to 4.33 × 10–8 moles/1, and at oxygen concentrations from 1.6 to 15.0 × 10–3 moles/1. The rate data were correlated by the steady state adsorption model and, by comparison with previous published results, it was concluded that this model provides a valuable means of correlating and interpreting catalytic oxidation rate data. Earlier data for benzene oxidation on the same catalyst were critically evaluated and a possible source of error was suggested.  相似文献   

15.
《Applied Catalysis A: General》2002,223(1-2):225-238
The effect of catalyst fluidization on the conversion of methane to syngas in methane reforming with CO2 and H2O in the presence of O2 under pressurized conditions was investigated over Ni and Pt catalysts. Methane and CO2 conversion in the fluidized bed reactor was higher than those in the fixed bed reactor over Ni0.15Mg0.85O catalyst under 1.0 MPa. This reactor effect was dependent on the catalyst properties. Conversion levels in the fluidized and fixed bed reactor were almost the same over MgO-supported Ni and Pt catalysts. It is suggested that this phenomenon is related to the catalyst reducibility. On a catalyst with suitable reducibility, the oxidized catalyst can be reduced with the produced syngas and the reforming activity regenerates in the fluidized bed reactor. Although serious carbon deposition was observed on Ni0.15Mg0.85O in the fixed bed reactor, it was inhibited in the fluidized bed reactor.  相似文献   

16.
A mathematical model for thermo-catalytic decomposition of methane over carbon black catalysts in a fluidized bed was proposed. The simplified isothermal, uniform flow model was considered and implemented into a computer code to predict the reactor performance. The experiment of methane decomposition into hydrogen and carbon was carried out in a fluidized bed of I.D of 0.055 m and height of 1.0 m. The range of reaction temperature was 850–900 °C, gas velocity was 1.0–3.0 U mf , and catalyst loading was 50–200 g. The reaction parameters for model equation were determined from the curve fittings and the comparison of experimental data with simulation results showed good agreement for fluidized bed reactor system. From the simulation results, the fluidized bed performance with different operating conditions were obtained, and this simple model can be used to predict the performance of a larger scale fluidized bed reactor and also in determining the optimum operating conditions.  相似文献   

17.
The catalytic gasification of cellulose to synthesis gas has been studied under mild conditions in a laboratory scale batch-feeding and fluidized bed reactor using air as a gasifying agent and Ar as a cellulose carrier from the feeder to catalyst bed under atmospheric pressure. Various types of support materials and supported metal catalysts have been investigated in this process. The flow conditions were 60 and 50 cm3 (STP)/min of air and Ar, 2 cm height of the fluidized bed and 0.7 s residence time of volatiles. From this investigation CeO2 has been found as the best support and Rh/CeO2 has been found as an excellent catalyst in the cellulose gasification at 823 K, which resulted in 100% C-conversion to gas. The use of Rh/CeO2 catalyst in the secondary bed resulted in lower yield of CO and H2.  相似文献   

18.
The catalytic hydrogenation of benzene was investigated over a supported nickel catalyst in a continuous stirred-vessel reactor between 260° and 450°F at atmospheric pressure. The effects of temperature, ratio of hydrogen to benzene and total feed rate (or contact time) on the conversion of benzene and yield of cyclohexane were determined. The use of the stirred reactor helped to eliminate mass transfer limitations. The investigation was carried out using surface-coated catalysts in order to eliminate pore diffusion which might otherwise mask the actual kinetics. Studies of the mixing characteristics of the reactor were carried out under both reacting and non-reacting conditions, by following conversion as a function of stirrer speed and by a tracer (pulse) technique, respectively. The kinetic data were analysed to determine the most probable model to represent the reaction. The Houghen–Watson type analysis was carried out using non-linear least squares instead of the usual linear one. The model that satisfactorily correlated the data over the entire temperature range describes the rate-controlling step as the surface reaction between adsorbed hydrogen and adsorbed benzene, the hydrogen addition being simultaneous. The following Hougen–Watson type equation was proposed: r = ke KH 3KB PH 3PB/(1+KHPH+KBPB+KCPC)4. The constants in this rate equation were expressed as a function of temperature.  相似文献   

19.
Perovskite oxide structured YBa2Cu3O7-x(YBCO) has been first prepared by carbonate precipitation and then modified with palladium or ruthenium by impregnation on the perovskite oxide, while cobalt was co-precipitated simultaneously in the same pH range with perovskite oxide. After characterization the catalysts were used in the temperature range 300–450°C, in the pressure range 1–9 atmospheres and for H2/CO ratios in the range 1–4 in a differential plug flow reactor for the hydrogenation of carbon monoxide to give hydrocarbons. The perovskite oxide (YBCO) 20% (w/w) and doped 2% (w/w) cobalt oxide catalyst were prepared by the wet chemical method from their nitrate solutions and oxidized at 950°C. Perovskite oxide (Dursun, G. & Winterbottom, J. M., J. Chem. Technol Biotechnol. 63 (1995) 113–16) was also doped with palladium and ruthenium metal by impregnation followed by oxidation at 250°C. The catalysts prepared were characterized by using TemperatureProgrammed Reduction (TPR) to observe the reduction temperature and also to measure total and metal surface area. The modified perovskite oxide on alumina, ruthenium- and cobalt-doped catalysts, has been shown to give a better conversion and also selectivity towards saturated hydrocarbons compared with palladium-doped catalyst. The temperature effect of these catalysts is more consistent, giving a steady increase of conversion with increasing temperature. Although increase of pressure increases the conversion, it causes very little change in product distribution. The activation energy of palladium- and ruthenium-doped, and cobalt co-precipitated catalysts for the reaction has been measured to be 55 kJ mol−1, 75 kJ mol−1 and 50 kJ mol−1 respectively. A general rate equation of the form r=k[H2]m[CO]n has been observed and found to be applicable at the pressures and temperatures used for the catalytic system studied and found to be m≌1·0 for palladium-doped, m≌1·2 for ruthenium-doped and m≌0·95 for cobalt co-precipitated catalysts as n becomes zero or negligibly less than zero. The mechanism of reaction to produce hydrocarbons from syngas has been deduced from the results. It appeared that the carbon monoxide insertion mechanism has been more evident for palladium-doped catalysts whereas the carbide mechanism plays the main role for the ruthenium-doped and cobalt co-precipitated catalysts. © 1998 Society of Chemical Industry  相似文献   

20.
The effect of the granulometric composition of microspherical KDI alumina-chromia catalysts on variation of the height and density of a fluidized bed was analyzed during pilot industrial testing at the OAO Nizhnekamskneftekhim iso-butane dehydrogenation plant. It was ascertained that one of the factors determining the acceleration of the cracking reactions was a rise in temperature to 600–610°C in the upper part of the reactor at the level of grid no. 10 due to the reduction of the upper boundary of the fluidized bed as a result of carryover from the reactor-regenerator system of catalyst particles smaller than 20 microns. The formation of a stable fluidized bed on the upper grid of the reactor depends on the content of 20–40 μm particles within the circulating catalyst. In order to compensate for the carryover of the catalyst, it is recommended that the mixture of catalysts accumulated in the first and second electrofilter fields be loaded into the system as well. This load consists of ∼25 wt % of the fraction with particle sizes of 20–40 μm and is as good the initial KDI in terms of catalytic parameters, ensuring stabilization of the fluidized bed height at a level of 52%, lowering of the temperature at the tenth grid of the reactor to 568°C, reduction of the yield of cracking products to 4.0 wt %, a 3% increase in the average daily output of iso-butylene, and a 7% decrease in the consumption of iso-butane. Recovery of the irrevocable carryout of the catalyst from the system and the formation of a stable fluidized bed were achieved by alternating the additional loading of the catalysts from the first and second fields of the electrofilter and the initial KDI with optimized fraction composition at a 4: 1 ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号