首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of epoxy resin–modified polyisocyanurate (EP‐PIR) foams with oxazolidone (OX) rings and isocyanurate (IS) rings have been successfully prepared by the reaction of polymethylene polyphenyl isocyanate (PAPI) and diglycidyl ether of bisphenol‐A (DGEBA). Fourier transform infrared spectroscopy and differential scanning calorimetry are performed to investigate the influence of curing temperature on the chemical structure of EP‐PIR foams. The results indicate that low temperature is beneficial to the formation of the IS ring, and high temperature is in favor of the OX ring. The influence of the mole ratio of [PAPI]/[DGEBA] on the mechanical properties and thermal stability has also been studied. With the increase of [PAPI]/[DGEBA], the specific compressive strength shows a maximum of 0.0135 ± 0.0003 MPa m3/kg. The optimized mole ratio of [PAPI]/[DGEBA] is around 2.5 to reach the better mechanical and thermal properties, and the glass‐transition temperature is as high as 323.5°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43085.  相似文献   

2.
A phthalonitrile‐substituted phosphonitrilic monomer has been synthesized from phosphonitrilic chloride trimer and then polymerized with addition of 4‐(hydroxylphenoxy)phthalonitrile (HPPN). The chemical structures of the phosphonitrilic monomer and polymer were characterized by Fourier Transform Infrared spectroscopy (FT‐IR) and proton Nuclear Magnetic Resonance spectroscopy (1H NMR). Curing behaviors and thermal stabilities of the polymer were investigated through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Analysis showed that the monomer has large processing temperature window and good thermal stability. Apparent activation energy, initial curing temperature (Ti), curing temperature (Tp), and termination curing temperature (Tf) of the phosphonitrilic polymer were explored. Dynamic mechanical analysis (DMA), glass transition temperature (Tg) were studied, and limiting oxygen index (LOI) were estimated from the van Krevelen equation, which indicates the polymer process high modulus and good flame retardance. Micro‐scale combustion calorimetry (MCC) was also used for evaluating the flammability of the polymers. Postcuring effects were explored, showing excellent thermal and mechanical properties with postcuring. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42606.  相似文献   

3.
A novel method has been developed for the combination of polyurethanes and polybenzoxazines. For this purpose, firstly, p‐nitrophenol blocked polyurethanes (BPUs) were prepared via the reaction of poly(tetramethylene ether) glycol of various molecular weights, 2,4‐tolylene diisocyanate and p‐nitrophenol. The BPUs were then mixed with 2,2‐bis(3,4‐dihydro‐3‐phenyl‐2H‐1,3‐benzoxazine)propane (Ba) at various weight ratios. To prepare poly(urethane‐co‐benzoxazine) networks, the BPU/Ba mixtures were subjected to a heating programme derived from detailed differential scanning calorimetry and gel content measurements. Results showed about 30 to 40 °C reduction of polymerization temperature for complete curing of BPU/Ba mixtures in comparison to neat Ba. This phenomenon was related to catalytic action of librated p‐nitrophenol molecules. The thermal, mechanical, viscoelastic and electrical properties of prepared thermoset polymers were measured and correlated with their chemical structures. A significant improvement of thermal stability and dielectric strength in comparison to neat polyurethanes was found. Also, enhancement of tensile properties, ease of curing and ability to be transformed into thin films are fascinating features of these newly developed materials in comparison to neat polybenzoxazines. Therefore, these polymers have potential applicability as high‐performance materials in modern electrical industries. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
Nonylphenol (NP), stannous octoate [Sn(Otc)2], and a mixture of NP and Sn(Otc)2 were employed for catalyzing cyanate ester resin. The curing reaction was studied by differential scanning calorimetry. A water‐absorption test at 85 °C was utilized to study the resistance to warm and humid conditions. The thermal properties were evaluated through measuring thermal weight loss and the glass‐transition temperature (Tg), and the mechanical properties were evaluated through three‐point bending tests and tensile tests. The results show that the mixture of NP and Sn(Otc)2 exhibits the best catalytic efficiency by decreasing the exothermic peak temperature by almost 148 °C. The mixture of NP and Sn(Otc)2 has unfavorable effects on the thermal stability. Nevertheless, all catalyst systems have good water‐absorption resistance. The mechanical investigation confirms that the tensile properties show a little reduction that is due to the plasticization of the catalyst, while the excellent flexural properties are maintained. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43959.  相似文献   

5.
A polybenzoxazine/polysiloxane hybrid has been prepared by sol–gel process and ring‐opening polymerization. For this purpose, first a functionalized benzoxazine was synthesized from bisphenol A, paraformaldehyde and 3‐(trimethoxysilyl) propylamine, with initial molar ratio 1 : 4 : 2, and 95% yield. The structure of the monomer was characterized by Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance. The sol–gel process and curing behavior have been studied by FTIR spectroscopy and differential scanning calorimetry. The dynamic mechanical thermal analysis of the hybrid material (Bz‐PSi) showed higher Tg and storage modulus respect to the conventional polybenzoxazine (Bz‐BA). Also, the thermogravimetric analysis revealed a better thermal stability. The high limiting oxygen index (LOI) values (about LOI = 32) confirmed similar effective flame retardance properties of the hybrid material respect to conventional benzoxazine. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
The curing behavior of a phenolic resol resin in the presence of p‐toluensulphonic acid is reported herein. The gel time of different systems has been determined by thermal scanning rheometry. Thermal and mechanical properties of the resin have been modified by the addition of varying amounts of fillers, talc, and kaolin. dynamic mechanical thermal analysis is used to determine the mechanical properties of the systems and the influence of the fillers and the postcuring. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
A thermosetting resin system, based on tetraglycidyl‐4,4′‐diaminodiphenylmethane, has been developed via copolymerization with 4,4′‐diaminodiphenylsulfone in the presence of a newly synthesized liquid crystalline epoxy (LCE). The curing behavior of LCE‐containing resin system was evaluated using curing kinetics method and Fourier transform infrared spectroscopy. The effect of LCE on the thermal and mechanical properties of modified epoxy systems was studied. Thermogravimetric analysis indicated that the modified resin systems displayed a high T0.05 and char yield at lower concentrations of LCE (≤5 wt%), suggesting an improved thermal stability. As determined using dynamic mechanical analysis and differential scanning calorimetry, the glass transition value increased by 9.7% compared to that of the neat resin when the LCE content was 5 wt%. Meanwhile, the addition of 5 wt% of LCE maximized the toughness with a 175% increase in impact strength. The analysis of fracture surfaces revealed a possible effect of LCE as a toughener and showed no phase separation in the modified resin system, which was also confirmed by dynamic mechanical analysis. © 2016 Society of Chemical Industry  相似文献   

8.
Binary blends composed of 4,4′‐bis(3,4‐dicyanophenoxy)biphenyl (biphenyl PN) and diglycidyl ether of bisphenol A (epoxy resin) and oligomeric n = 4 phthalonitrile (n = 4 PN) and epoxy resin were prepared. The cure behavior of the blends was studied under dynamic and isothermal curing conditions using differential scanning calorimetry, simultaneous thermogravimetric/differential thermal analysis, infrared spectroscopy, and rheological analysis. The studies revealed that phthalonitrile‐epoxy blends exhibited good processability and that they copolymerized with or without the addition of curing additive. In the absence of curing additive, the blends required higher temperatures and longer cure times. The thermal and dynamic viscoelastic properties of amine‐cured phthalonitrile‐epoxy copolymers were examined and compared with those of the neat epoxy resin. The properties of the epoxy resin improved with increasing biphenyl PN content and with n = 4 PN addition. Specifically, the copolymers exhibited higher glass transition temperatures, increased thermal and thermo‐oxidative stabililty, and enhanced dynamic mechanical properties relative to the commercially available epoxy resin. The results showed that the phthalonitrile‐epoxy blends and copolymers have an attractive combination of processability and high temperature properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
In this study, high‐temperature vulcanized silicone rubbers (HTV‐SRs) using fumed silica (FSi), precipitated silica (PSi), and modified precipitated silica (MPSi) as reinforcing fillers were prepared. The effect of morphology and surface chemistry of the silica on the thermal and mechanical properties of the resultant silicone rubbers was investigated using curing rheometer, scanning electron microscopy, mechanical test, and dynamic mechanical analysis. The thermo‐oxidative stability and solvent resistance of the vulcanized silicone rubbers were further evaluated via heat ageing test, extraction, and swelling experiments. It is shown that the mechanical properties (tensile modulus and tensile strength) of the as‐prepared HTV‐SRs are in the order of FSi > PSi > MPSi, which could be attributed to the molecular interaction between the filler and the matrix. FSi has the highest surface area, which enhances the hydrogen bonding interaction between the filler and the silicone matrix; while MPSi, in which part of Si? OH groups have been consumed during modification, shows the weakest interaction among the three. The filler–matrix interaction could also explain the lowest swelling and sol fraction in FSi‐filled HTV‐SR, and the low viscosity and good processibility of PSi‐ and MPSi‐filled HTV‐SR. Furthermore, it is also shown that the MPSi‐filled HTV‐SR exhibits the highest retention of mechanical properties after thermal aging at 250 °C for 24 h, which could be attributed to the lowest acidity of the fillers. The possible mechanism for acid catalyzed hydrolytic chain scission and intramolecular chain backbiting has been proposed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46646.  相似文献   

10.
For reducing the cure temperature and improving the thermal stability and mechanical properties, a thermosetting resin system composed of novolak and bismaleimide (BMI) was developed by reactive blending and using dicumyl peroxide (DCP) as a novel curing agent. Novolak was allylated and reacted with BMI to produce bismaleimide allylated novolak (BAN), and the effect of DCP on flexural, impact and heat distortion temperature of cured resin were investigated. On the basis of improved mechanical and thermal properties at 0.5% DCP contents, the curing behavior of DCP/BAN resin system was evaluated by DSC analysis. Ene, Diels‐Alder, homo‐polymerization and alternating copolymerization which occurred in DCP/BAN resin system were further verified using FTIR at sequential cure conditions from 140 to 200°C. Kissinger and Ozawa‐Flynn‐wall methods were used to optimize the process and curing reactions of DCP/BAN resin system. The results showed that the addition of 0.5% DCP in BAN reduced the curing temperature and time of the modified resin. For evaluating process ability of the modified system, composite samples using polyvinyl acetyl fiber were molded and tested for flexural properties. The resulting samples showed better flexural properties when compared with the composite made with neat BAN. The modified 0.5% DCP/BAN resin system with good mechanical properties and manufacturability can be used for making bulk molding compounds and fiber reinforced composites required in various commercial and aerospace applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41829.  相似文献   

11.
Methylethylsilicone rubber (MESR)/methylphenylsilicone rubber (MPSR) blends were cured with 2,5‐dimethyl‐2,5‐di(tert‐butylperoxy)hexane. The curing characteristics, morphology, thermal behaviors, mechanical properties at different temperatures, radiation resistance, and thermal aging resistance of the MESR/MPSR blends were investigated. The results show that a high MPSR content could decrease the optimum curing time and improve the scorch safety. Dynamic mechanical analysis revealed that the glass‐transition temperature of the blends increased slightly with the addition of MPSR. Scanning electron microscopy showed that MESR and MPSR had good compatibility in the blends. Thermogravimetric analysis indicated that the thermal stability of the blends increased with increasing quantity of MPSR. The blends had excellent mechanical properties at low temperatures. However, these properties were significantly reduced when the temperature was increased. Moreover, changes in the mechanical properties decreased with increasing MPSR content at high temperatures, especially at temperatures higher than 100°C. In addition, the radiation resistance and thermal aging resistance of the blends increased with increasing MPSR content. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40529.  相似文献   

12.
A kind of novel aromatic amine bis(4‐nonyl‐2,5‐diamine‐penoxyl)alkylate (RAn) as curing agents for epoxy resins were prepared through three steps of reactions using nonyl phenol and dibromoalkylate as materials. Dynamic mechanical analysis (DMA) indicated that the secondary relaxation for the resins cured by RAn were generated by the nonyls in RAn molecules when temperature was below ?50°C. Comparing with other reference resins, the enhancement for toughness of RAn cured‐resins were at least 15%, which were contributed by such secondary relaxation. Furthermore, stiffness of the networks and thermal properties of the resins were not influent by the flexible groups (nonyl) in RAn after curing, since the groups were located only in the branched chains of the networks. The mechanical and thermal properties of the new material have been significantly enhanced. The relevant method and procedure developed through this research have been granted Chinese patent recently (Yang and Gong, Chin. Pat. CN1978483A, 2007). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
The objective of this study was to investigate the effects of amine terminated elastomeric epoxy tougheners on the mechanical and thermal properties of diglycidyl ether of bisphenol A based epoxy resin. The amine terminated polycaprolactone (PCL) (1) and PCL‐PDMS‐PCL (2) based oligomers were synthesized and characterized by FTIR spectroscopy. The stoichiometrical amount of the reactive oligomers as toughener, reactive epoxy resin and the curing agent, 4,4′‐diaminodiphenyl sulfone (DDS) were mixed and degassed. The homogenous mixtures were cured at 120°C into the preheated molds. The mechanical and thermal characterizations of toughened epoxy resin system were evaluated. It has been shown that the mechanical and thermal properties of toughened epoxy system vary as a function of the chemical structure and the concentration of rective oligomers. Higher mechanical properties were obtained for epoxy resin toughened by PCL‐PDMS‐PCL (2) based oligomer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
The goal of this study is to compare thermal and mechanical properties of an epoxy resin system reinforced with SiC nanoparticles using both conventional thermal curing and microwave irradiation techniques. The microwave curing technique has shown potential benefits in processing polymeric nanocomposites by reducing the curing time without compromising the thermo‐mechanical performances of the materials. It was observed from this investigation that, the curing time was drastically reduced to ~30 min for microwave curing instead of 12 h room temperature curing with additional 6 h post curing at 75°C. Ductile behavior was more pronounced for microwave curing technique while thermal curing showed brittle like behavior as revealed from flexural test. The maximum strain to failure was increased by 25–40% for microwave‐cured nanocomposites over the room temperature cured nanocomposites for the same loading of nanofillers. The glass transition temperature (Tg) also increased by ~14°C while curing under microwave irradiation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41708.  相似文献   

15.
A novel easily curing system of 2,2‐bis(4‐cyanatophenyl) propane(BACY) was prepared by employing 4,4′‐(Hexafluoroisopropylidene) Diphenol (BPAF) as modifier. The curing efficiency of BPAF was evaluated by means of differential scanning calorimetry (DSC) and Fourier translation infrared spectroscopy analysis (FTIR). It was found that the exothermic peak temperature (Tp) was 168 °C when the content of BPAF/BACY was 15/85 by weight, while the temperature of BACY was 215 °C under the same conditions when trace of cobalt(III) acetylacetonate(CoAt(III)) was added. Besides, BPAF/BACY system owned outstanding properties including excellent curing characteristics, high shear strength, remarkable dielectric properties and high thermal stability in contrast to BACY, 4,4′‐(1‐methylethylidene) bisphenol(BPA)/BACY, and nonylphenol(NoP)/BACY systems. Moreover, the properties of cured BPAF/BACY modified by different proportions of BPAF were studied in detail. It was shown that moderate BPAF was conducive to most properties of polycyanurate, and the optimal proportion of BPAF/BACY was 15/85 by weight. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44518.  相似文献   

16.
In this article, the dynamic vulcanization process was applied to polypropylene (PP)/Novolac blends compatibilized with maleic anhydride‐grafted PP (MAH‐g‐PP). The influences of dynamic cure, content of MAH‐g‐PP, Novolac, and curing agent on mechanical properties of the PP/Novolac blends were investigated. The results showed that the dynamically cured PP/MAH‐g‐PP/Novolac blend had the best mechanical properties among all PP/Novolac blends. The dynamic cure of Novolac improved the modulus and stiffness of the PP/Novolac blends. The addition of MAH‐g‐PP into dynamically cured PP/Novolac blend further enhanced the mechanical properties. With increasing Novolac content, tensile strength, flexural modulus, and flexural strength increased significantly, while the elongation at break dramatically deceased. Those blends with hexamethylenetetramine (HMTA) as a curing agent had good mechanical properties at HMTA content of 10 wt %. Scanning electron microscopy (SEM) analysis showed that dynamically cured PP/MAH‐g‐PP/Novolac blends had finer domains than the PP/MAH‐g‐PP/Novolac blends. Thermogravimetric analysis (TGA) results indicated that the incorporation of Novolac into PP could improve the thermal stability of PP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

17.
Summary: The epoxy copolymers containing sulfone groups, diglycidyl ether of bisphenol‐A – Bisphenol‐S (DGEBA‐S) were synthesized by a hot‐melt method. The thermal properties of the epoxy systems initiated by two cationic latent catalysts, i.e., N‐benzylpyrazinium hexafluoroantimonate (BPH) and N‐benzylquinoxalinium hexafluoroantimonate (BQH), were investigated by using a dynamic DSC, DMA, and TGA. The mechanical properties were measured by single‐edge‐notched (SEN) beam fracture toughness tests. As a result, the thermal stability and mechanical interfacial properties of the DGEBA‐S/catalyst system were found to be higher than those of the DGEBA/catalyst. This was probably due to the fact that the introduction of sulfone groups with a polar nature to the main chain of the epoxy resins led to an improvement of thermal stability and toughness of the cured epoxy copolymers.

Conversion of the epoxy/catalyst systems as a function of curing temperature.  相似文献   


18.
Bisphenol A novolacs were synthesized in both melting and solution processes using p‐formaldehyde and formalin solution in presence of oxalic acid catalyst, respectively. Hydrogen nuclear magnetic resonance, 1H NMR, investigations show a high methylene bridge contents in the novolacs synthesized in a melting process. These novolacs were analyzed by gel permation chromatography (GPC) and fourier transform infrared spectroscopy (FTIR). The bisphenol A novolac was cured with 1‐(2‐amino ethyl) piprazine (AEP) as a curing agent for epoxy resins. The cured resins were evaluated as organic coating for steel. The mechanical properties of the cured epoxy resins were evaluated. The chemical resistances of the cured resins were evaluated through salt spray resistance, hot water, solvents, acid and alkali resistance measurements. The data indicate that the cured epoxy resins have excellent chemical resistances as organic coatings among other cured resins. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
A series of highly thermostable epoxy foams with diglycidyl ether of bisphenol‐A and bisphenol‐S epoxy resin (DGEBA/DGEBS), 4,4′‐diaminodiphenyl sulfone (DDS) as curing agent have been successfully prepared through a two‐step process. Dynamic and steady shear rheological measurements of the DGEBA/DGEBS/DDS reacting mixture are performed. The results indicate all samples present an extremely rapid increase in viscosities after a critical time. The gel time measured by the crossover of tan δ is independent of frequency. The influence of SiO2 content on morphology, thermal, and mechanical properties of epoxy foams has also been investigated. Due to the heterogeneous nucleation of SiO2, the pore morphology with a bimodal size distribution is observed when the content of SiO2 is above 5 wt %. Dynamic mechanical analysis (DMA) reveals that pure epoxy foam possesses a high glass transition temperature (206°C). The maximum of specific compressive strength can be up to 0.0253 MPa m3 kg?1 at around 1.0 wt % SiO2. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40068.  相似文献   

20.
Graphene nanoplatelets (GNPs) have excellent thermal, electrical, and mechanical properties. The incorporation of GNPs into a polymer can remarkably enhance the thermal and mechanical properties of the polymer especially when GNPs are well dispersed in the polymer matrix with strong interfacial bonding. Therefore, in this study, GNPs were amine‐functionalized by covalently bonding 4,4′‐methylene dianiline onto their surfaces via a facile synthetic route. The amine‐functionalization was confirmed by FTIR spectroscopy and TGA. Epoxy/GNPs nanocomposites were prepared and their curing behavior, thermomechanical properties and impact strength were investigated. The amine‐functionalization increased curing rate, storage modulus, thermal dimensional stability, and impact strength of the nanocomposites. The SEM images for the fracture surface of the nanocomposite with amine‐functionalized GNPs showed a smooth and ductile failure‐like surface, resulted from the improved interfacial bonding between GNPs and the epoxy matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42269.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号