首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystallization behavior of the blending system consists of homopolymer poly(ethylene oxide) (h‐PEO) with different molecular weights, and polystyrene‐block‐poly (ethylene oxide)‐block‐polystyrene (PS‐b‐PEO‐b‐PS) triblock copolymer has been investigated by DSC measurements. The crystallization of PEO block (b‐PEO) in block copolymer occurs under much lower temperature than that of the h‐PEO in the bulk (ΔT > 65 °C), which is attributed to the homogeneous nucleation crystallization behavior of the b‐PEO microdomains. In both the “dry‐brush” and the “wet brush” blending systems, the homogeneous nucleation crystallization temperature of PS‐b‐PEO‐b‐PS/h‐PEO blends increases due to the increase of the domain size. The heterogeneous nucleation crystallization temperatures of h‐PEO in the wet brush blending systems are higher than that of the corresponding h‐PEO in the bulk. At the same time, the heterogeneous nucleation crystallization temperature of b‐PEO10000 decreases from 43°C to 30°C and 40°C in the h‐PEO600 and h‐PEO2000 blending systems, respectively, because of the stretching of the PEO chains in the wet brush. However, this kind of phenomenon does not happen in the dry brush blending systems. The self‐seeding procedure was used to further ascertain the nucleation mechanism in the crystallization process. As a result, the self‐seeding domains have been confirmed, and the difference between the dry brush and wet brush systems has been observed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
The crystallization behavior of two molecular weight poly(ethylene oxide)s (PEO) and their blends with the block copolymer poly(2‐vinyl pyridine)‐b‐poly(ethylene oxide) (P2VP‐b‐PEO) was investigated by polarized optical microscopy, thermogravimetric analysis, differential scanning calorimetry, and atomic force microscopy (AFM). A sharp decreasing of the spherulite growth rate was observed with the increasing of the copolymer content in the blend. The addition of P2VP‐b‐PEO to PEO increases the degradation temperature becoming the thermal stability of the blend very similar to that of the block copolymer P2VP‐b‐PEO. Glass transition temperatures, Tg, for PEO/P2VP‐b‐PEO blends were intermediate between those of the pure components and the value increased as the content of PEO homopolymer decreased in the blend. AFM images showed spherulites with lamellar crystal morphology for the homopolymer PEO. Lamellar crystal morphology with sheaf‐like lamellar arrangement was observed for 80 wt% PEO(200M) and a lamellar crystal morphology with grain aggregation was observed for 50 and 20 wt% blends. The isothermal crystallization kinetics of PEO was progressively retarded as the copolymer content in the blend increased, since the copolymer hinders the molecular mobility in the miscible amorphous phase. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

3.
An approach to achieve confined crystallization of ferroelectric semicrystalline poly(vinylidene fluoride) (PVDF) was investigated. A novel polydimethylsiloxane‐block‐poly(methyl methacrylate)‐block‐polystyrene (PDMS‐b‐PMMA‐b‐PS) triblock copolymer was synthesized by the atom‐transfer radical polymerization method and blended with PVDF. Miscibility, crystallization and morphology of the PVDF/PDMS‐b‐PMMA‐b‐PS blends were studied within the whole range of concentration. In this A‐b‐B‐b‐C/D type of triblock copolymer/homopolymer system, crystallizable PVDF (D) and PMMA (B) middle block are miscible because of specific intermolecular interactions while A block (PDMS) and C block (PS) are immiscible with PVDF. Nanostructured morphology is formed via self‐assembly, displaying a variety of phase structures and semicrystalline morphologies. Crystallization at 145 °C reveals that both α and β crystalline phases of PVDF are present in PVDF/PDMS‐b‐PMMA‐b‐PS blends. Incorporation of the triblock copolymer decreases the degree of crystallization and enhances the proportion of β to α phase of semicrystalline PVDF. Introduction of PDMS‐b‐PMMA‐b‐PS triblock copolymer to PVDF makes the crystalline structures compact and confines the crystal size. Moreover, small‐angle X‐ray scattering results indicate that the immiscible PDMS as a soft block and PS as a hard block are localized in PVDF crystalline structures. © 2019 Society of Chemical Industry  相似文献   

4.
The adsorption behavior of various poly(ethylene oxide)–polystyrene–poly(ethylene oxide) (PEO‐PS‐PEO) triblock copolymer (TBC) s on acrylic latex particles in propylene glycol was studied. The composition of the PEO‐PS‐PEO triblock polymers varied from 41 to 106 in each PEO block length and from 18 to 41 in the PS block length. The location of the PEO‐PS‐PEO TBC was determined by analyzing for the physically adsorbed amount on the latex surface, the anchored mount on the surface, the entrapped amount inside the particle, and the “free” PEO‐PS‐PEO TBCs in the propylene glycol. A contour graph technique was applied to analyze the experimental data, which showed that a minimum existed for the physically adsorbed portion at a PS block length of about 30 units. When the PS block length was less than 30 units, the adsorption decreased with increasing PS block length, indicating rearrangement of mixed PEO brush and adsorbed PS block. When the PS block was greater than 30 units, the adsorption increased with increasing block length because of the poor solvency of the PS block in the propylene glycol medium, resulting in a collapse of the PS chain. Considering the binding energy between the PS block and the latex particle surface, which governs adsorption, it was hypothesized that a lower block length limit exists, below which no adsorption takes place. The solubility of the PS block in propylene glycol guides the important upper block length limit. The anchored fraction of the block copolymer increased continuously with increasing PS block length in the entire region investigated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1963–1975, 2001  相似文献   

5.
Sixteen poly(ethylene oxide)–polystyrene–poly(ethylene oxide) (PEO‐PS‐PEO) triblock copolymers were synthesized by anionic polymerization. They were characterized by gel permeation chromatography and proton NMR. The molecular weight of these 16 PEO‐PS‐PEO triblock copolymers ranged from 5100 to 13,300. The polystyrene (PS) block length was between 13 and 41. The PEO block length was between 41 and 106. The polydispersity index for these PEO‐PS‐PEO triblock copolymers were 1.05 ± 0.02. When using these stabilizers in the emulsion copolymerization of ethyl methacrylate and lauryl methacylate in propylene glycol, only a narrow window of stability was observed. Stable latexes were formed only when the molecular weights of the PEO blocks were within the range of 5300–7700 and the molecular weights of the PS blocks were 2000–4000. The stabilizer ability for these triblock copolymers was correlated with their molecular weight and conformation in propylene glycol. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1951–1962, 2001  相似文献   

6.
Morphologies of polymer blends based on polystyrene‐b‐ polybutadiene‐b ‐poly(methyl methacrylate) (SBM) triblock copolymer were predicted, adopting the phase diagram proposed by Stadler and co‐workers for neat SBM block copolymer, and were experimentally proved using atomic force microscopy. All investigated polymer blends based on SBM triblock copolymer modified with polystyrene (PS) and/or poly(methyl methacrylate) (PMMA) homopolymers showed the expected nanostructures. For polymer blends of symmetric SBM‐1 triblock copolymer with PS homopolymer, the cylinders in cylinders core?shell morphology and the perforated lamellae morphology were obtained. Moreover, modifying the same SBM‐1 triblock copolymer with both PS and PMMA homopolymers the cylinders at cylinders morphology was reached. The predictions for morphologies of blends based on asymmetric SBM‐2 triblock copolymer were also confirmed experimentally, visualizing a spheres over spheres structure. This work presents an easy way of using PS and/or PMMA homopolymers for preparing nanostructured polymer blends based on SBM triblock copolymers with desired morphologies, similar to those of neat SBM block copolymers. © 2017 Society of Chemical Industry  相似文献   

7.
Poly(vinyl acetate) (PVAc) was added to the crystalline blends of poly(ethylene oxide) (PEO) and poly(L ‐lactide) (PLLA) (40/60) of higher molecular weights, whereas diblock and triblock poly(ethylene glycol)–poly(L ‐lactide) copolymers were added to the same blend of moderate molecular weights. The crystallization rate of PLLA of the blend containing PVAc was reduced, as evidenced by X‐ray diffraction measurement. A ringed spherulite morphology of PLLA was observed in the PEO/PLLA/PVAc blend, attributed to the presence of twisted lamellae, and the morphology was affected by the amount of PVAc. A steady increase in the elongation at break in the solution blend with an increase in the PVAc content was observed. The melting behavior of PLLA and PEO in the PEO/PLLA/block copolymer blends was not greatly affected by the block copolymer, and the average size of the dispersed PEO domain was not significantly changed by the block copolymer. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3618–3626, 2001  相似文献   

8.
A series of well‐defined and property‐controlled polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐polystyrene (PS) triblock copolymers were synthesized by atom‐transfer radical polymerization, using 2‐bromo‐propionate‐end‐group PEO 2000 as macroinitiatators. The structure of triblock copolymers was confirmed by 1H‐NMR and GPC. The relationship between some properties and molecular weight of copolymers was studied. It was found that glass‐transition temperature (Tg) of copolymers gradually rose and crystallinity of copolymers regularly dropped when molecular weight of copolymers increased. The copolymers showed to be amphiphilic. Stable emulsions could form in water layer of copolymer–toluene–water system and the emulsifying abilities of copolymers slightly decreased when molecular weight of copolymers increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 727–730, 2006  相似文献   

9.
Blends of styrene–butadiene–styrene (SBS) or styrene–ethylene/1‐butene–styrene (SEBS) triblock copolymers with a commercial mixture of polystyrene (PS) and poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) were prepared in the melt at different temperatures according to the chemical kind of the copolymer. Although solution‐cast SBS/PPO and SBS/PS blends were already known in the literature, a general and systematic study of the miscibility of the PS/PPO blend with a styrene‐based triblock copolymer in the melt was still missing. The thermal and mechanical behavior of SBS/(PPO/PS) blends was investigated by means of DSC and dynamic thermomechanical analysis (DMTA). The results were then compared to analogous SEBS/(PPO/PS) blends, for which the presence of a saturated olefinic block allowed processing at higher temperatures (220°C instead of 180°C). All the blends were further characterized by SEM and TGA to tentatively relate the observed properties with the blends' morphology and degradation temperature. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2698–2705, 2003  相似文献   

10.
Homogeneous solutions of syndiotactic polystyrene (sPS) in diglycidylether of bisphenol A (DGEBA), containing 2.5, 5 and 7.5 wt % of thermoplastic with or without 0.5 and 1 wt % of poly(styrene‐b‐ethylene oxide) (PS‐b‐PEO) block copolymer, were polymerized using a stoichiometric amount of an aromatic amine hardener, 4,4′‐methylene bis (3‐chloro‐2,6‐diethylaniline) (MCDEA). The dynamic‐mechanical properties and morphological changes of sPS‐(DGEBA/MCDEA) compatibilized with different amount of PS‐b‐PEO have been investigated in this paper. The addition of the block copolymer produced significant changes in the morphologies generated. The size of the dispersed spherical sPS spherulites does not change significantly, but less spherulites of sPS appeared upon network formation in the systems with compatibilizer, what means that addition of compatibilizer in this system delayed crystallization of sPS in sPS‐(DGEBA/MCDEA) systems and change phase separation mechanism from crystallization‐induced phase separation (CIPS) and reaction‐induced phase separation (RIPS) almost only to RIPS. Moreover, PS‐b‐PEO with higher molecular weight of PS block seems to be a more effective compatibilizer than one with lower molecular weight of PS block. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 479–488, 2006  相似文献   

11.
The synthesis of 2,2,3,3‐tetrahydro‐perfluoroundecanoyl end‐functionalized polystyrene–poly(ethylene oxide) block (PS‐block‐PEO‐RF) copolymers and their matching PS‐block‐PEO diblock copolymers was carried out by sequential anionic polymerization. Viscometry and 19F NMR studies show that the PS‐block‐PEO copolymers, in contrast to their matching PS‐block‐PEO‐RF copolymers, exhibit a micellar rather than the associative behavior seen for the latter. However, the presence of an excess of fluorinated acid, used for end‐functionalization, produces a reduction of the associative behavior above the overlap concentration, with the fluorinated acid acting like a surfactant. A competition may also occur between PS—and RF—mediated micellization. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
The temperature-composition phase diagrams for six pairs of diblock copolymer and homopolymer are presented, putting emphasis on the effects of block copolymer composition and the molecular weight of added homopolymers. For the study, two polystyrene-block-polyisoprene (SI diblock) copolymers having lamellar or spherical microdomains, a polystyrene-block-polybutadiene (SB diblock) copolymer having lamellar microdomains, and a series of polystyrene (PS), polyisoprene (PI), and polybutadiene (PB) were used to prepare SI/PS, SI/PI, SB/PS, and SB/PB binary blends, via solvent casting, over a wide range of compositions. The shape of temperature-composition phase diagram of block copolymer/homopolymer blend is greatly affected by a small change in the ratio of the molecular weight of added homopolymer to the molecular weight of corresponding block (MH,A/MC,A or MH,B/MC,B) when the block copolymer is highly asymmetric in composition but only moderately even for a large change in MH,A/MC,A ratio when the block copolymer is symmetric or nearly symmetric in composition. The boundary between the mesophase (M1) of block copolymer and the homogeneous phase (H) of block copolymer/homopolymer blend was determined using oscillatory shear rheometry, and the boundary between the homogeneous phase (H) and two-phase liquid mixture (L1+L2) with L1 being disordered block copolymer and L2 being macrophase-separated homopolymer was determined using cloud point measurement. It is found that the addition of PI to a lamella-forming SI diblock copolymer or the addition of PB to a lamella-forming SB diblock copolymer gives rise to disordered micelles (DM) having no long-range order, while the addition of PS to a lamella-forming SB diblock copolymer retains lamellar microdomain structure until microdomains disappear completely. Thus, the phase diagram of SI/PI or SB/PB blends looks more complicated than that of SI/PS or SB/PS blends.  相似文献   

13.
The nonisothermal crystallization behavior and melting process of the poly(ϵ-caprolactone) (PCL)/poly(ethylene oxide) (PEO) diblock copolymer in which the weight fraction of the PCL block is 0.80 has been studied by using differential scanning calorimetry (DSC). Only the PCL block is crystallizable, the PEO block with 0.20 weight fraction cannot crystallize. The kinetics of the PCL/PEO diblock copolymer under nonisothermal crystallization conditions has been analyzed by Ozawa's equation. The experimental data shows no agreement with Ozawa's theoretical predictions in the whole crystallization process, especially in the later stage. A parameter, kinetic crystallinity, is used to characterize the crystallizability of the PCL/PEO diblock copolymer. The amorphous and microphase separating PEO block has a great influence on the crystallization of the PCL block. It bonds chemically with the PCL block, reduces crystallization entropy, and provides nucleating sites for the PCL block crystallization. The existence of the PEO block leads to the occurrence of the two melting peaks of the PCL/PEO diblock copolymer during melting process after nonisothermal crystallization. The comparison of nonisothermal crystallization of the PCL/PEO diblock copolymer, PCL/PEO blend, and PCL and PEO homopolymers has been made. It showed a lower crystallinity of the PCL/PEO diblock copolymer than that of others and a faster crystallization rate of the PCL/PEO diblock copolymer than that of the PCL homopolymer, but a slower crystallization rate than that of the PCL/PEO blend. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1793–1804, 1997  相似文献   

14.
In this contribution, we reported to utilize polystyrene‐block‐polybutadiene‐block‐polystyrene (PS‐b‐PB‐b‐PS), a commercial triblock copolymer to toughen epoxy thermosets. First, a PS‐b‐PB‐b‐PS triblock copolymer was chemically modified with hydroboration‐oxidation reaction, with which the midblock was hydroxylated whereas the endblocks remained unaffected. It was found that the degree of hydroxylation was well controlled. One of the hydroxylated PS‐b‐PB‐b‐PS samples was then used as the macromolecular initiator to synthesize a poly(ε‐caprolactone)‐grafted PS‐b‐PB‐b‐PS via the ring‐opening polymerization. It was found that the PS‐b‐PB‐b‐PS with poly(ε‐caprolactone) grafts can be successfully employed to nanostructure epoxy thermosets; the “core‐shell” microdomains composed of PB and PS were generated in the nanostructured thermosets. The nanostructured thermosets displayed improved fracture toughness. POLYM. ENG. SCI., 59:2387–2396, 2019. © 2019 Society of Plastics Engineers  相似文献   

15.
The AB type diblock PS‐b‐PEO and ABA type triblock PS‐b‐PEO‐b‐PS copolymers containing the same proportions of polystyrene (PS) and poly(ethylene oxide) (PEO) but different connection sequence were synthesized and investigated. Using the sequential living anionic polymerization and ring‐opening polymerization mechanisms, diblock PS‐b‐PEO copolymers with one hydroxyl group at the PEO end were obtained. Then, using the classic and efficient Williamson reaction (realized in a ‘click’ style), triblock PS‐b‐PEO‐b‐PS copolymers were achieved by a coupling reaction between hydroxyl groups at the PEO end of PS‐b‐PEO. The PS‐b‐PEO and PS‐b‐PEO‐b‐PS copolymers were well characterized by 1H NMR spectra and SEC measurements. The critical micelle concentration (CMC) and thermal behaviors were also investigated by steady‐state fluorescence spectra and DSC, respectively. The results showed that, because the PEO segment in triblock PS‐b‐PEO‐b‐PS was more restricted than that in diblock PS‐b‐PEO copolymer, the former PS‐b‐PEO‐b‐PS copolymer always gave higher CMC values and lower crystallization temperature (Tc), melting temperature (Tm) and degree of crystallinity (Xc) parameters. © 2015 Society of Chemical Industry  相似文献   

16.
The shear rheological properties of polystyrene (PS)/nano‐CaCO3 composites were studied to determine the plasticization of nano‐CaCO3 to PS. The composites were prepared by melt extrusion. A poly(styrene–butadiene–styrene) triblock copolymer (SBS), a poly(styrene–isoprene–styrene) triblock copolymer (SIS), SBS‐grafted maleic anhydride (SBS–MAH), and SIS‐grafted maleic anhydride were used as modifiers or compatibilizers. Because of the weak interaction between CaCO3 and the PS matrix, the composites with 1 and 3 phr CaCO3 loadings exhibited apparently higher melt shear rates under the same shear stress with respect to the matrix polymer. The storage moduli for the composites increased with low CaCO3 concentrations. The results showed that CaCO3 had some effects on the compatibility of PS/SBS (or SBS–MAH)/CaCO3 composites, in which SBS could effectively retard the movement of PS chain segments. The improvement of compatibility, due to the chemical interaction between CaCO3 and the grafted maleic anhydride, had obvious effects on the rheological behavior of the composites, the melt shear rate of the composites decreased greatly, and the results showed that nano‐CaCO3 could plasticize the PS matrix to some extent. Rheological methods provided an indirect but useful characterization of the composite structure. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

17.
The microphase separation structure in the molten state and the structure formation in crystallization from such ordered melt were investigated for the blends of polystyrene–polyethylene block copolymers (SE) with polystyrene homopolymer (PS) and polyethylene homopolymer (PE) and for the blends consisting of two kinds of SE with different copolymer compositions from each other, using synchrotron small-angle X-ray scattering techniques (SAXS). The copolymer compositions of SE block copolymers employed were 0.34, 0.58 and 0.73 wt. fraction of PE, and their melt morphologies were cylindrical, lamellar and lamellar, respectively. Macrophase separation or the morphology change in the melt occurred depending on the molecular weight and the blend composition, as reported so far. In crystallization from such macrophase-separated and microphase-separated melts, the melt morphology was completely kept for all the blends. Crystallization behavior was also investigated for the blends. The crystallization within the spherical and cylindrical domains surrounded by glassy PS was not observed for SE/PS blends. In the crystallization from the macrophase-separated melt, two exothermal peaks were observed in the DSC measurements, while a single peak was observed for other blends. For the blends with PS, the degree of crystallinity was depressed and the apparent activation energy of crystallization was high, compared to those for the corresponding neat SE. For SE/PE and SE/SE blends, those were changed depending on the blend composition.  相似文献   

18.
A polymer blend system consisting of polystyrene grafted onto poly (p-phenylene ethynylene) (PS-g-PPE) and poly (styrene-block-isoprene-block-styrene) triblock copolymer (SIS) yields highly polarized emission due to the unidirectional alignment of the PPE molecules. During the roll casting, the triblock copolymer microphase separates and creates unidirectionally aligned PS cylindrical microdomains in the rubbery PI matrix. PPE, a fluorescent conjugated polymer, was grafted with polystyrene (PS) side chains that enabled sequestration and alignment of these rigid backbone emitter molecules into the PS microdomains of the SIS triblock copolymer. Deforming the thermoplastic elastomer in a direction perpendicular to the orientation direction of the cylinders causes rotation of the PS cylinders and the PPE emitter molecules and affords tunable polarized emission due to re-orientation of the PPE containing PS cylinders as well as film thinning from Poisson effect.  相似文献   

19.
We observed that modified polyphenylene ether (PPE) was solubilized in thermoplastic styrenic elastomer (TPS) and that a two‐phase lacy structure formed on nanometer scales when the TPS composition was 67 wt % and modified PPE and polystyrene‐block‐poly(styrene‐co‐ethylene‐co‐butylene)‐block‐polystyrene (S‐SEB‐S triblock copolymer) were blended. However, the molecular weight of the outer PS block segments MoutPS and the content of the outer PS block segments ?outPS were <10,000 g/mol and 20 wt %, respectively. The resulting S‐SEB‐S/modified PPE nano‐alloy exhibited both flexibility and flame retardancy, unlike other materials, where a trade‐off exists between these two properties; that is, the flame retardancy was excellent when the phosphorus additive was present. This combination of properties might be attributed to the two‐phase nanometer‐scale structure consisting of flame‐retardant styrene/PPE domains and a continuous soft, lacy SEB matrix. The results for polystyrene‐block‐poly(ethylene‐co‐butylene)‐block‐polystyrene (S‐EB‐S triblock copolymer)/modified PPE blends were presented for comparison. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40446.  相似文献   

20.
Well‐defined polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐PS triblock copolymers were synthesized by atom‐transfer radical polymerization (ATRP), using C—X‐end‐group PEO as macroinitiators. The triblock copolymers were characterized by infrared spectroscopy, nuclear magnetic resonance spectroscopy, and gel permeation chromatography. The experimental results showed that the polymerization was controlled/living. It was found that when the number‐average molecular weight of the macroinititors increased from 2000 to 10,000, the molecular weight distribution of the triblock copolymers decreased roughly from 1.49 to 1.07 and the rate of polymerization became much slower. The possible polymerization mechanism is discussed. According to the Cu content measured with atomic absorption spectrometry, the removal of catalysts, with CHCl3 as the solvent and kaolin as the in situ absorption agent, was effective. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2882–2888, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号