首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 879 毫秒
1.
The influence of trans‐polyoctylene rubber (TOR) on the flow property, die swell behaviour and green tensile property of NR (natural rubber)/NBR (acrylonitrile–butadiene rubber) blend compound was investigated as a function of TOR loading level. The pure TOR, NR and NBR compounds were also investigated for comparison with the blend compounds. The shear viscosity of TOR strongly depended on the temperature as well as shear rate. The viscosity of the NR/NBR blend compound was even lower than that of the constituent components at relatively lower shear rates, and the viscosity difference became smaller as the shear rate was increased. The viscosity of the NR/NBR blend compounds was strongly affected by the addition of TOR but the effect became negligible with increasing the shear rate. Both the die‐swell ratio and the surface topology of extrudates were also affected by TOR addition; the dependence on shear rate was much stronger for higher TOR level. The NR/NBR blend compound showed much higher green tensile strength and elongation at break than those of the constituent components. Both the green tensile modulus and strength of the NR/NBR blend compound were greatly enhanced, while the elongation at break was reduced with the addition of TOR. © 2002 Society of Chemical Industry  相似文献   

2.
The extrudate swell behavior of glass bead‐filled low‐density polyethylene (LDPE) composite melts was investigated using a constant rate type of capillary rheometer at high extrusion rates and test temperatures varied from 140 to 170°C. The results show that the die swell ratio (B) of the melts increases nonlinearly with increasing apparent shear rates for the system filled with the surface of glass beads pretreated with a silane coupling agent, while the B for the system filled with uncoated particles remains almost constant when the true wall shear rate is greater than 2000 s−1 at a constant temperature. The values of B for both the pure LDPE and the filled systems decreases linearly with an increase of the temperature and an increase of the die diameter at fixed shear rates, and the sensitivity of B on the die diameter and temperature for the former is higher than that of the latter. Furthermore, the effect of the filler content on B is insignificant, while the values of B decreases, obviously, with an increasing glass bead diameter (d) when d is smaller than 50 μm; then B varies slightly with d. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 419–424, 2000  相似文献   

3.
4.
Because silica has strong filler‐filler interactions and adsorbs polar materials, a silica‐filled rubber compound exhibits poor dispersion of the filler and poor cure characteristics in comparison with those of a carbon black‐filled rubber compound. Acrylonitrile‐butadiene rubber (NBR) improves filler dispersion in silica‐filled styrene‐butadiene rubber (SBR) compounds. The influence of the NBR type on the properties of silica‐filled SBR compounds containing NBR was studied with NBRs of various acrylonitrile contents. The composition of the bound rubber was different from that of the compounded rubber. The NBR content of the bound rubber was higher than that of the compounded rubber; this became clearer for NBR with a higher acrylonitrile content. The Mooney scorch time and cure rate became faster as the acrylonitrile content in NBR increased. The modulus increased with an increase in the acrylonitrile content of NBR because the crosslink density increased. The experimental results could be explained by interactions of the nitrile group of NBR with silica. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 385–393, 2002  相似文献   

5.
Since silica has strong filler–filler interactions and adsorbs polar materials, a silica‐filled rubber compound has a poor dispersion of the filler and poor cure characteristics. Improvement of the properties of silica‐filled styrene–butadiene rubber (SBR) compounds was studied using acrylonitrile–butadiene rubber (NBR). Viscosities and bound rubber contents of the compounds became lower by adding NBR to the compound. Cure characteristics of the compounds were improved by adding NBR. Physical properties such as modulus, tensile strength, heat buildup, abrasion, and crack resistance were also improved by adding NBR. Both wet traction and rolling resistance of the vulcanizates containing NBR were better than were those of the vulcanizate without NBR. The NBR effects in the silica‐filled SBR compounds were compared with the carbon black‐filled compounds. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1127–1133, 2001  相似文献   

6.
Because silica has strong filler–filler interactions, a silica‐filled rubber compound shows a poor filler dispersion compared to a carbon black‐filled one. Improvement of the filler dispersion in silica‐filled styrene–butadiene rubber (SBR) compounds was studied using low molecular weight polybutadiene (liquid PBD) with the high content of 1,2‐unit. By adding the liquid PBD to the silica‐filled SBR compound, the filler dispersion and flow property are improved. The cure time and cure rate become faster as the 1,2‐unit content of the liquid PBD increases for the compounds containing the liquid PBD. The crosslink density increases linearly with increase in the 1,2‐unit content of the liquid PBD. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3135–3140, 2003  相似文献   

7.
The influence of the extrusion process on the morphology and micromechanical behavior of an asymmetric polystyrene‐block‐(polystyrene‐co‐butadiene)‐block‐polystyrene (SBS) star block copolymer and its blends with general‐purpose homopolystyrene (hPS) was studied with films prepared with a single‐screw extruder. The techniques used were transmission electron microscopy and uniaxial tensile testing. Unlike the pure SBS block copolymer possessing a gyroid‐like morphology, whose deformation was found to be insensitive to the processing conditions, the mechanical properties of the blends strongly depended on the extrusion temperature as well as the apparent shear rate. The deformation micromechanism was primarily dictated by the blend morphology. The yielding and cavitation of the nanostructures were the principal deformation mechanism for the blends having a droplet‐like microphase‐separated morphology, whereas cavitation dominated for the blends containing macrophase‐separated layers of polystyrene. The mechanical properties of the blends were further examined with respect to the influence of the temperature and shear rate on the phase behavior of the blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

8.
Meta‐pentadecenyl phenol, a nonisoprenoid phenolic lipid, is a renewable agricultural resource and also a byproduct of the cashew industry; it is popularly known as cardanol. This study throws light on the grafting of cardanol, which has been established as a multifunctional additive for natural rubber, onto the main‐chain backbone of styrene–butadiene rubber (SBR), a synthetic polymer used to imbibe the multifunctional properties of the former, such as those of a plasticizer, curing promoter, process aid, and antioxidant, into the latter. The grafting was carried out in the solution stage on a trial basis with a peroxide catalyst, and all of the grafting parameters were optimized with a Taguchi methodology. The grafting of cardanol onto the SBR backbone was successfully confirmed by UV–visible spectroscopy, Fourier transform infrared spectroscopy, and NMR analysis. Thermal analysis of the cardanol‐grafted styrene–butadiene rubber (C‐g‐SBR) revealed a higher thermal stability and better plasticizing effect than that those found in the virgin SBR. The rheological properties of the grafted rubber indicated the improvement of the pseudo‐plastic (shear‐thinning) nature compared to that in gum SBR. The unfilled C‐g‐SBR vulcanizates exhibited physicomechanical properties comparable to 5‐phr processing‐oil‐containing SBR [oil‐plasticized styrene–butadiene rubber (OPSBR)] vulcanizates. The carbon‐black‐filled C‐g‐SBR vulcanizates exhibited improved plasticization, a faster curing rate, easy processability, and better physicomechanical properties compared to the 5‐phr OPSBR vulcanizates. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45150.  相似文献   

9.
Unique nanocomposite (NC) gels were prepared by blending water swollen unmodified montmorillonite clay suspension with natural rubber (NR) and styrene‐butadiene rubber (SBR) latices followed by prevulcanization. These were extensively characterized by dynamic light scattering, solvent swelling, tensile, and dynamic mechanical measurements. Reinforcement behavior of NC gels was investigated by adding NC gels into virgin NR and SBR matrices at various loadings. The distribution and morphology of NC gels in the elastomer matrices was studied by X‐ray dot mapping and high‐resolution transmission electron microscopy. Experimental results indicated tremendous improvement of tensile strength (TS) and modulus of the NC gel‐filled matrices along with noticeable changes in dynamic mechanical and rheological properties. Compared with virgin NR, the TS of 16 phr NC gel‐filled NR system increased by 117%. Similar level of enhancement of TS was also registered for the NC gel‐filled SBR systems. NC gel‐filled systems showed higher shear viscosities and lower die‐swell values compared with their virgin counterparts. Contemporary particulate composite and nanofiller reinforcement models were used to understand the reinforcing behavior of these NC gels. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

10.
Polymer blends of carboxylated butadiene‐acrylonitrile copolymer (nitrile rubber) and polyamide 6 (PA6) were developed in twin screw extrusion. The rubber was cured with SP 1045 methylol phenolic resin during melt mixing in twin screw. Effect of degree of carboxylation in the rubber phase on blend properties has been assessed. Phase morphologies have been characterized using transmission electron microscopy. A compatibilizing NBR‐g‐Nylon 6 graft copolymer generated in situ during melt mixing via interfacial reaction between the ? COOH groups in NBR and the ? NH2 end groups in nylon 6 has been effective in generating a fine and stable dispersion of the rubber within the polyamide matrix. The graft copolymer has been characterized by DMTA. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 372–377, 2007  相似文献   

11.
Natural rubber (NR) and styrene‐butadiene rubber (SBR) latex gels were prepared by sulfur prevulcanization technique with varying amounts of curing agent and accelerator systems to generate gradient in crosslink density. These gels were characterized by solvent swelling, dynamic light scattering, atomic force microscopy, and mechanical properties. Crosslinked NR gels were intermixed with neat SBR matrix and vice versa. Rheological behavior of chemically crosslinked gel‐filled NR and SBR was studied by capillary rheometry. Intermixing of crosslinked gels in the rubber matrices resulted in a considerable reduction in apparent shear viscosity and die swell values. This behavior was found to be dependent on several factors like gel concentration in the matrix, crosslink density of the gels, their size, and distribution. The effect of temperature on viscosity was studied extensively following the Arrhenious‐Eyring model. A shear rate‐temperature superposition mastercurve was constructed to predict the melt viscosities of the systems as a function of temperature. The change in die swell values was related to the change in first normal stress difference. The scanning electron photomicrographs of the extrudates revealed that presence of gels markedly improved the surface roughness of the raw rubbers. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

12.
The flow behavior of an uncured styrene‐butadiene rubber (SBR) has been studied by using a specific preshearing capillary rheometer in the range of temperatures encountered in extrusion, i.e. between 40°C and 90°C. A pure SBR and various SBR compounds filled with different amounts of carbon black (from 17 to 33 wt%) have been characterized. It was observed, for all tested materials, that the flow curve could be divided in different parts: at low shear rate, the material exhibits a classical behavior, where stress increases regularly with the shear rate. Above a certain critical stress, flow features changed, characterized by the simultaneous onset of wall slip and upstream instabilities. This critical stress is independent of temperature but increases linearly with carbon black amount. Flow curves at different filler contents were superimposed, using a shift factor that varies with filler content. Two theories for time/filler content superposition were proposed. Finally, a general viscosity law for uncured SBR compounds was introduced. This law is based on a Carreau‐Yasuda equation, where zero‐shear viscosity and characteristic time depend on both temperature and filler content, through Arrhenius and Krieger‐Dougherty expressions, respectively. POLYM. ENG. SCI., 55:2156–2162, 2015. © 2015 Society of Plastics Engineers  相似文献   

13.
Extrusion die swell of natural rubber compounded with a wide variety of carbon blacks has been determined in a capillary rheometer using a long circular die. The range of variation of carbon black loading, surface area, and structure are, respectively, 10 to 60 phr, 44 to 124 m2/g, and 78 to 120 cc/100 g. The effective carbon black volume fraction φe not participating in the strain recovery leading to die swell is assumed to be the sum of the actual filler volume fraction and the fraction of unextractable rubber determined experimentally for each compound. Bagley and Duffey's analysis of extrusion die swell of unfilled polymers as unconstrained elastic recovery was adopted for a filled elastomeric system whose relative shear modulus (G/G0) is assumed to vary as (1 ? φe)?N. The matrix shear modulus G0, originally introduced by Nakazima and Shida on the basis of a linearized approximation, will depend on the shear stress level because of nonlinear deformation. The power N will vary with shear stress which changes the orientation of carbon black aggregates. Except for these features, die swell data for a wide range of carbon black compounds fall on a single curve when plotted in the manner of the predicted relation between the wall shear stress, die swell, and φe. Replacing φe by Medalia's φ′ based on an equivalent sphere concept introduces a larger scatter around the mean curve.  相似文献   

14.
The melt flow properties during capillary extrusion of nanometre‐calcium‐carbonate‐filled acrylonitrile–butadiene–styrene (ABS) copolymer composites were measured by using a Rosand rheometer to identify the effects of the filler content and operation conditions on the rheological behaviour of the sample melts. The experiments were conducted under the following test conditions: temperature varied from 220 to 240 °C and shear rate ranged from 10 to 104 s?1. The filler volume fractions were 0, 10, 20, 30, 40 and 50%. The results showed that the shear flow did not strictly obey the power law under the test conditions, and that the entry pressure drop (ΔPen) and the extension stress (σe) in entry flow increased nonlinearly, while the melt shear viscosity (ηs) and extension viscosity (ηe) decreased with increasing the wall shear stress (τw) at constant test temperature. The dependence of the melt shear viscosity on the test temperature was approximately consistent with the Arrhenius expression at fixed τw. When τw was constant, ηs and ηe increased while ΔPen and σe decreased with the addition of the filler volume fraction. © 2002 Society of Chemical Industry  相似文献   

15.
The influence of in situ modification of silica with bis‐(3‐(triethoxysilyl)‐propyl)‐tetrasulfide (TESPT) on filler network in silica filled solution SBR compound was investigated. In situ modification greatly increased the bound rubber content. TEM observation of silica gel showed that bridging and interlocking of absorbed chains on the surface of silica particles formed the filler network. Rubber processing analyzer (RPA) was used to characterize the filler network and interaction between silica and rubber by strain and temperature sweeps. In situ modification improved the dispersion of silica, and in the meantime, the chemical bonds were formed between silica and rubber, which conferred the stability of silica dispersion during the processing. Compared to the compound without in situ modification, the compound with in situ modification of silica exhibited higher tan δ at low strains and lower tan δ at high strains, which can be explained in terms of filler network in the compounds. After in situ modification, DMTA results showed silica‐filled SSBR vulcanizate exhibited higher tan δ in the temperature range of ?30 to 10°C, and RPA results showed that it had lower tan δ at 60°C when the strain was more than 3%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Migration behaviors of antiozonants in carbon black‐filled rubber vulcanizates with different rubber compositions of natural rubber (NR), styrene–butadiene rubber (SBR), and butadiene rubber (BR) were studied at constant temperatures of 40–100°C and outdoors. Three single rubber‐based vulcanizates, three biblends, and three triblends were used. N‐Phenyl‐N′‐isopropyl‐p‐phenylenediamine (IPPD) and N‐phenyl‐N′‐(1,3‐dimethylbutyl)‐p‐phenylenediamine (HPPD) were employed as antiozonants. Migration rates of the antiozonants became faster with increasing the temperature. The order of the migration rates in the single rubber‐based vulcanizates was BR > NR > SBR. The migration rates in the vulcanizates containing SBR, on the whole, increased with decreasing the SBR content, while those in the vulcanizates containing BR decreased with decreasing the BR content. Difference in the migration behaviors of the antiozonants depending on the rubber composition was explained both by the intermolecular interactions of the antiozonants with the matrix and by interface formed between dissimilar rubbers in the blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 237–242, 2001  相似文献   

17.
The influence of temperatures and flow rates on the rheological behavior during extrusion of acrylonitrile–butadiene–styrene (ABS) terpolymer melt was investigated by using a Rosand capillary rheometer. It was found that the wall shear stress (τw) increased nonlinearly with increasing apparent shear rates and the slope of the curves changed suddenly at a shear rate of about 103 s?1, whereas the melt‐shear viscosity decreased quickly at a τw of about 200 kPa. When the temperature was fixed, the entry‐pressure drop and extensional stress increased nonlinearly with increasing τw, whereas it decreased with a rise of temperature at a constant level of τw. The relationship between the melt‐shear viscosity and temperature was consistent with an Arrhenius expression. The results showed that the effects of extrusion operation conditions on the rheological behavior of the ABS resin melt were significant and were attributable to the change of morphology of the rubber phase over a wide range of shear rates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 606–611, 2002  相似文献   

18.
In this study, the reinforcement performance of the modified silicas prepared through the incorporation of 3‐aminopropyltriethoxy silane (AP) and further reaction of bisphenol A diglycidyl ether (BG) to styrene‐butadiene/butadiene rubber (SBR/BR) compounds was investigated to discuss the effect of surface and networked states on the properties of silica‐filled rubber compounds. The adjustment of the ratio of BG to AP varied the surface and networked states of silica. The amino and glycidyl groups dispersed on the silica and the networks formed on/between silica particles considerably influenced the properties of SBR/BR compounds reinforced with the modified silicas. The presence of amino group increased viscosity of the rubber compounds due to the attrition between rubber chains and silica particles, while the entanglement of rubber chains with the networks successfully improve both wet traction and rolling resistance, without sacrificing the fundamental properties of the rubber compounds, even though no coupling agents were applied. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44893.  相似文献   

19.
The factors which govern the extrudate swell of a styrene–butadiene rubber compound filled with 30 phr of N330 carbon black at various states-of-mix were investigated. The state-of-mix is quantified by an effective filler volume fraction, based on an estimate of the amount of rubber immobilized in the carbon black agglomerates. The swell has been found to be dominated by recoverable strain and relaxation time, which are both controlled by the effective filler volume fraction. In contrast, shear rate, wall slip, and the rubber–carbon black network have not been found to have a significant effect on the extrudate swell. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:305–315, 1997  相似文献   

20.
An experimental study of the rheological behavior of ethylene–octene copolymer vulcanizates in extrusion containing blowing agent has been carried out. The cell morphology development has been studied through a scanning electron microscope. Rheological properties of unfilled and precipitated silica‐filled systems with variations of blowing agent, extrusion temperature, and shear rate have been studied by using a Monsanto processibility tester (MPT). The total extrusion pressure (PT), apparent shear stress (τwa), apparent viscosity (ηa), and die swell (%) of the unfilled and silica‐filled compounds have been determined by using MPT. The effect of blowing agent (ADC) on the rheological properties of the vulcanizates has also been investigated. There is a reduction of stress and viscosity with blowing agent loading. It was observed that the incorporation of a blowing agent led to decreased shear thinning behavior resulting in an increase in power law index. The viscosity reduction factor (VRF) of unfilled vulcanizates is found to be dependent on the concentration of the blowing agent, shear rate, and temperature, whereas VRF of silica‐filled vulcanizates is found to be dependent on shear rate, temperature, and blowing agent concentration. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1132–1138, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号