首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, a multi-contact Al2O3@AgNPs hybrid thermal conductive filler was synthesized by in-situ growth method to fill high thermal conductivity polydimethylsiloxane (PDMS)-based composites to prepare TIMs. And the thermal conductivity, electrical conductivity, and mechanical properties of the composite materials were studied. During the synthesis process of the multi-contact hybrid filler, different concentrations of silver ions were reduced to generate silver nanoparticles and attached to the surface of Al2O3. Al2O3@AgNPs/PDMS thermally conductive composites were prepared by changing the filler addition. Using SEM, XPS, and XRD is used to characterize the morphology and chemical composition of Al2O3@AgNPs hybrid filler. The thermal conductivity of PDMS-based composites with different AgNPs content under 70 wt% filler loading was studied. The results show that the thermal conductivity of PDMS-based composites filled with 7owt%Al2O3@3AgNPs/PDMS multi-contact hybrid filler is 0.67 W/m·K, which is 3.72 times that of pure PDMS, and is higher than that of unmodified Al2O3 with the same addition amount. /PDMS composite material has a high thermal conductivity of 24%. This work provides a new idea for the design and manufacture of high thermal conductivity hybrid fillers for TIMs.  相似文献   

2.
Natural rubber (NR) composites highly filled with nano‐α‐alumina (nano‐α‐Al2O3) modified in situ by the silane coupling agent bis‐(3‐triethoxysilylpropyl)‐tetrasulfide (Si69) were prepared. The effects of various modification conditions and filler loading on the properties of the nano‐α‐Al2O3/NR composites were investigated. The results indicated that the preparation conditions for optimum mechanical (both static and dynamic) properties and thermal conductivity were as follows: 100 phr of nano‐α‐Al2O3, 6 phr of Si69, heat‐treatment time of 5 min at 150°C. Furthermore, two other types of fillers were also investigated as thermally conductive reinforcing fillers for the NR systems: (1) hybrid fillers composed of 100 phr of nano‐α‐Al2O3 and various amounts of the carbon black (CB) N330 and (2) nano‐γ‐Al2O3, the particles of which are smaller than those of nano‐α‐Al2O3. The hybrid fillers had better mechanical properties and dynamic performance with higher thermal conductivity, which means that it can be expected to endow the rubber products serving under dynamic conditions with much longer service life. The smaller sized nano‐γ‐Al2O3 particles performed better than the larger‐sized nano‐α‐Al2O3 particles in reinforcing NR. However, the composites filled with nano‐γ‐Al2O3 had lower thermal conductivity than those filled with nano‐α‐Al2O3 and badly deteriorated dynamic properties at loadings higher than 50 phr, both indicating that nano‐γ‐Al2O3 is not a good candidate for novel thermally conductive reinforcing filler. POLYM. COMPOS., 37:771–781, 2016. © 2014 Society of Plastics Engineers  相似文献   

3.
Microsized or nanosized α‐alumina (Al2O3) and boron nitride (BN) were effectively treated by silanes or diisocyanate, and then filled into the epoxy to prepare thermally conductive adhesives. The effects of surface modification and particle size on the performance of thermally conductive epoxy adhesives were investigated. It was revealed that epoxy adhesives filled with nanosized particles performed higher thermal conductivity, electrical insulation, and mechanical strength than those filled with microsized ones. It was also indicated that surface modification of the particles was beneficial for improving thermal conductivity of the epoxy composites, which was due to the decrease of thermal contact resistance of the filler‐matrix through the improvement of the interface between filler and matrix by surface treatment. A synergic effect was found when epoxy adhesives were filled with combination of Al2O3 nanoparticles and microsized BN platelets, that is, the thermal conductivity was higher than that of any sole particles filled epoxy composites at a constant loading content. The heat conductive mechanism was proposed that conductive networks easily formed among nano‐Al2O3 particles and micro‐BN platelets and the thermal resistance decreased due to the contact between the nano‐Al2O3 and BN, which resulted in improving the thermal conductivity. POLYM. ENG. SCI., 50:1809–1819, 2010. © 2010 Society of Plastics Engineers  相似文献   

4.
Polypyrrole (PPy) nanolayers were introduced on the surface of alumina (Al2O3) particles via admicellar polymerization. The properties of silicone rubbers (SRs) filled with PPy-coated Al2O3 and pristine Al2O3 as thermally conductive fillers were studied and compared. The results demonstrate that the addition of PPy-coated Al2O3 leads to a better interfacial compatibility but lower cross-linking density of the composites than pristine Al2O3. The improvement in the compatibility and the decrease in the cross-linking density are paradoxes in affecting mechanical properties. The improvement in the compatibility shows a slight predominance on the strength at low-filler contents. Lower cross-linking density of modified-Al2O3/SR composites led to a better processing performance and a higher maximum filler loading amount than the pristine Al2O3/SR composites, which is beneficial to increasing the thermal conductivity and maintaining a relatively good strength. The PPy-coated Al2O3/SR composite with 83 wt% filler content has a thermal conductivity of 1.98 W/(m K) and a tensile strength of 2.9 MPa, and the elongation at break was 63%. Functionalized fillers by admicellar polymerization used in the fabrication of filler/SR composites not only improve the interfacial compatibility but also optimize and expand the functions of the composites, which has great significance for the production and application of thermally conductive SR in some branches of industry (automotive, electrical engineering, etc.) in the future.  相似文献   

5.
In this work, transient thermal response and ablation behavior of liquid silicone rubber composites containing fluxing/ceramic forming fillers were investigated under different heat flows using an oxyacetylene flame. The results indicated that the introduction of zinc borate (ZB) and aluminum oxide (Al2O3) effectively reduced the temperature at various depths of the samples, and they improved the thermal insulation properties and lowered pyrolysis rates. The above finding was attributed to the heat absorption arising from water release and melt filling as well as the vitrified reaction of solid melt due to the decomposition of ZB. Besides, the melting and exfoliation of Al2O3 and the formation of aluminum silicate (Al2SiO5) caused heat absorption effect. Additionally, the mass ablation rates and line ablation rates increased with rising heat flows coupling with a decrease of compressive strength of the char layers. In a nutshell, the effect of adding ZB/Al2O3 on the thermal insulation behavior of epoxy-modified vinyl silicone rubber (EMVSR) composites under different heat flows was elucidtaed. This work served as a reference for the design and preparation of flexible ablative materials for thermal protection applications.  相似文献   

6.
Combining thermal conductivity with electrical isolation is a very interesting topic for electronic applications in order to transfer the generated heat. Typical approaches combine thermally conductive fillers with a thermoplastic matrix. The aim of this work was to investigate the influence of different fillers and matrices on the thermal conductivity of the polymer matrix composites. In this study, various inorganic fillers, including aluminum oxide (Al2O3), zinc oxide (ZnO), and boron nitride (BN) with different shapes and sizes, were used in matrix polymers, such as polyamide 6 (PA6), polypropylene (PP), polycarbonate (PC), thermoplastic polyurethane (TPU), and polysulfone (PSU), to produce thermally conductive polymer matrix composites by compounding and injection molding. Using simple mathematical models (e.g., Agari model, Lewis–Nielson model), a first attempt was made to predict thermal conductivity from constituent properties. The materials were characterized by tensile testing, density measurement, and thermal conductivity measurement. Contact angle measurements and the calculated surface energy can be used to evaluate the wetting behavior, which correlates directly with the elastic modulus. Based on the aforementioned evaluations, we found that besides the volume fraction, the particle shape in combination with the intrinsic thermal conductivity of the filler has the greatest influence on the thermal conductivity of the composite.  相似文献   

7.
The effects of alumina (Al2O3) and zinc oxide (ZnO) fillers on the curing characteristics, thermal and mechanical properties of silicone rubber were studied. Rheometer results indicate that the incorporation of ZnO fillers retards the curing process, whereas an enhancement in cure rate was observed for Al2O3. Higher maximum torque (MH) and minimum torque (ML) values was also observed for ZnO silicone rubber compounds compared to Al2O3. Thermogravimetric analysis (TGA) showed that ZnO silicone rubber compounds are thermally more stable than Al2O3; however, the coefficient of thermal expansion of the Al2O3 silicone rubber compounds are lower than that of ZnO. Comparison in mechanical strength between the two silicone rubber hybrids indicates that ZnO is a better reinforcement filler, as evidenced in the tensile strength, elongation at break, and modulus at 300% elongation.  相似文献   

8.
The epoxy molding compound (EMC) with thermal conductive pathways was developed by structure designing. Three kinds of EMCs with different thermal conductivities were used in this investigation, specifically epoxy filled with Si3N4, filled with hybrid Si3N4/SiO2, and filled with SiO2. Improved thermal conductivity was achieved by constructing thermal conductive pathways using high thermal conductivity EMC (Si3N4) in low thermal conductivity EMC (SiO2). The morphology and microstructure of the top of EMC indicate that continuous network is formed by the filler which anticipates heat conductivity. The highest thermal conductivity of the EMC was 2.5 W/m K, reached when the volume fraction of EMC (Si3N4) is 80% (to compare with hybrid Si3N4/SiO2 filled‐EMC, the content of total fillers in the EMC was kept at 60 vol %). For a given volume fraction of EMC (Si3N4) in the EMC system, thermal conductivity values increase according to the order EMC (Si3N4) particles filled‐EMC, hybrid Si3N4/SiO2 filled‐EMC, and EMC(SiO2) particles filled‐EMC. The coefficient of thermal expansion (CTE) decreases with increasing Si3N4 content in the whole filler. The values of CTE ranged between 23 × 10?6 and 30 × 10?6 K?1. The investigated EMC samples have a flexural strength of about 36–39 MPa. The dielectric constant increases with Si3N4 content but generally remains at a low level (<6, at 1 MHz). The average electrical volume resistivity of the EMC samples are higher than 1.4 × 1010 Ω m, the average electrical surface resistivity of the EMC samples are higher than 6.7 × 1014 Ω. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Thermal conductivities of silicone rubber filled with ZnO in a wide volume range were measured in order to study the effect of formed conductive particle chains on thermal conductivities. With the increasing of content of ZnO particles in silicone rubber, the amount of formed conductive chains increases and the conductive chains tend linearly to increase the thermal conductivity of the composite. The experimental results obtained were also analyzed using the Nielsen and Agari models to explain the effect of ZnO filler on the formation of thermal conductive networks. Thermal conductivities of a polymer filled with high volume content of particles evidently increased with the adding of small size fillers. The scanning electron microscopy (SEM) showed that percolation threshold has been reached at 31.4 vol% ZnO filler loading, and the hybrid fillers are more densely packed than single fillers in the silicone rubber matrix. There occurs a positive temperature coefficient (PTC) phenomenon in thermal resistance in composites of silicone rubber filled with ZnO. POLYM. COMPOS., 28:125–130, 2007. © 2007 Society of Plastics Engineers  相似文献   

10.
The addition-type liquid silicone rubber (ALSR) co-filled with spheroidal Al2O3 and flaky BN was prepared by the mechanical blending and hot press methods to enhance the thermal, electrical, and mechanical properties for industrial applications. Morphologies of ALSR composites were observed by scanning electron microscopy (SEM). It was found that the interaction and dispersion state of fillers in the ALSR matrix were improved by the introduction of BN sheets. Thermal, electrical, and mechanical performances of the ALSR composites were also investigated in this work. The result indicated that the thermal conductivity of ALSR can reach 0.64 W m−1 K−1 at the loading of 20 wt% Al2O3/20 wt% BN, which is 3.76 times higher than that of pure ALSR. The addition of Al2O3 particles and BN sheets also improve the thermal stability of ALSR composites. Moreover, pure ALSR and ALSR composites showed relatively lower dielectric permittivity (1.9–3.1) and dielectric loss factor (<0.001) at the frequency of 103 Hz. The insulation properties including volume resistivity and breakdown strength were improved by the introduction of flaky BN in the ALSR matrix. The volume resistivity and characteristic breakdown strength E0 are 6.68 × 1015 Ω m and 93 kV/mm, respectively, at the loading of 20 wt% Al2O3/20 wt% BN. In addition, the mechanical characteristics including elongation at break and tensile strength of ALSR composites were also enhanced by co-filled fillers. The combination of these improved performances makes the co-filled ALSR composites attractive in the field of electrical and electronic applications.  相似文献   

11.
The thermal conductivities of a medium density polyethylene composites filled separately with two different thermal conductive fillers including graphite, cuprum, and aluminum oxide (Al2O3), an epoxy composites filled respectively with two different thermal conductive fillers including silicon nitride, aluminum hydroxide, Al2O3 and aluminum nitride, and a polypropylene composites filled with aluminum hydroxide and magnesium hydroxide were estimated using a thermal conductivity equation of polymer multiphase composites. This equation was based on a new heat transfer model, and the parameters were easily determined. It was found that the estimated thermal conductivities of the three composites systems were approximately close to the experimental measured data reported in literature. In addition, the predictions were roughly close to the estimations from the Agari model. POLYM. ENG. SCI., 57:965–972, 2017. © 2016 Society of Plastics Engineers  相似文献   

12.
SiC/Al2O3/MVQ导热复合材料的制备与性能研究   总被引:2,自引:0,他引:2  
分别使用碳化硅(SiC)、氧化铝(Al2O3)和SiC/Al2O3复配物制备了导热甲基乙烯基硅橡胶材料(MVQ),研究了SiC,Al2O3和SiC/Al2O3用量及表面改性对MVQ导热系数和力学性能的影响,结果表明,随导热填料用量的增大,MVQ导热系数增大;同等用量下,SiC/Al2O3/MVQ复合材料的导热性能均优于SiC/MVQ和Al2O3/MVQ;当SiC/Al2O3总用量为50份且SiC/Al2O3质量比为3/1时,复合材料导热系数为0.76 W/mK;随SC/Al2O3用量的增加,拉伸强度与拉断伸长率均降低,邵尔A硬度增大.表面处理后,复合材料导热性能得到进一步改善.  相似文献   

13.
The increasing demand for packaging materials calls for new technologies to achieve excellent thermal conductivity of polymer composites with low content of thermal conductive filler. This article prepared a kind of magnetically functionalized multilayer graphene (Fe3O4@MG) via electrostatic interactions, which efficiently enhanced the thermal conductivity of silicone rubber (SR) composites by the alignment of Fe3O4@MG in an external magnetic field. The morphology and structure of the Fe3O4@MG together with the thermal conductivity of corresponding Fe3O4@MG/SR composites were systematically investigated by SEM, TEM, XRD, elemental mapping, and thermal conductivity tester. The obtained results showed that Fe3O4@MG was induced to form chain-like bundles in silicone rubber matrix under the applied magnetic field, which enhanced the MG–MG interaction, and formed effective thermal pathways in the alignment direction. Furthermore, as coating mass ratio of Fe3O4@MG increased, the thermal conductivity of randomly oriented Fe3O4@MG/silicone rubber composites (R-Fe3O4@MG/SR) decreased gradually, whereas the through-plane thermal conductivity of vertically aligned Fe3O4@MG/silicone rubber composites (V-Fe3O4@MG/SR) increased even filled with same contents of thermal conductive filler. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47951.  相似文献   

14.
The long-term and stable operation of integrated circuits and microelectronics requires packaging epoxy resin (EP) exhibit high thermal conductivity for efficient heat dissipation, and excellent flame retardancy in case of thermal runaway. We achieved such EP composite via filling poly-dopamine (PDA) modified nanoscale Al2O3 spheres and microscale h-BN sheets. The PDA modification increases the compatibility between fillers and EP and largely reduces the viscosity, improving the dispersion of fillers in EP thus the thermal conductivity of EP composites. In addition, NH3, H2O, and N2 generated during the combustion of phenolic hydroxyls and aminos in PDA combined with the physical barrier effect of Al2O3 and h-BN can improve the flame retardancy of EP composites. As a consequence, the EP composite filled with PDA modified Al2O3 (26.67 wt%) and h-BN (13.33 wt%) (i.e., PDA-BNAO/EP) shows a thermal conductivity of 1.192 W/mK (654.9% of EP), a peak heat release rate of 194.9 W/g (33.8% of EP), and total heat release of 15.2 kJ/g (54.5% of EP), respectively. What's more, the viscosity of PDA-BNAO/EP is 20,443 mPa s, which is only 20% of BNAO/EP (whose viscosity is 102,281 mPa s). More importantly, the PDA-BNAO/EP has good dynamic mechanical properties with the storage modulus of 14.69 Gpa, glass transition temperature of 91.9°C and good electrical insulation, which is desired for packaging of microelectronics. PDA-BNAO/EP composite should be a promising candidate for widespread packaging materials of microelectronics.  相似文献   

15.
孔丽芬  张银华  徐珊 《粘接》2009,(6):64-66
综述了填充型导热橡胶的导热机理和各类导热填料的导热特性,介绍了提高导热硅橡胶导热性的途径。  相似文献   

16.
Thermally conductive silicone rubber used as elastomeric thermal pad is successfully developed with boron nitride powder as conductive filler. The effects of content and particle size of filler on the thermal conductivity and mechanical property of silicone rubber are investigated. The results indicate that the use of hybrid boron nitride with three different particle sizes at a preferable weight ratio gives silicone rubber better thermal conductivity compared with each boron nitride with single particle size at the same total filler content. Furthermore, scanning electron microscopy, differential scanning calorimeter, thermogravimetric, etc., are used to characterize the morphology, curing behavior, thermal stability, and coefficient of thermal expansion (CTE) of the silicone rubber composites. POLYM. COMPOS., 28:23–28, 2007. © 2007 Society of Plastics Engineers  相似文献   

17.
In this study, the effects of thermally conductive filler type (α‐Al2O3, SiC), volume fraction of the filler, and filler particle size distribution on the thermal conductivity and viscosity of room‐temperature‐vulcanized (RTV) silicone rubber and silicone grease were investigated. We were interested to find that silicone grease (or the RTV silicone rubber) had a maximum thermal conductivity (~1.48 W/mK) and a minimum viscosity (~3.4 × 104 mPa s), with a definite total volume fraction of the filler (0.55) when the distribution of filler sizes (the number ratio of two different particles sizes, i.e., 0.8 and 6 μm) was 600–700. We were able to increase the thermal conductivity of the RTV silicone rubber and silicone grease beyond 2 W/mK by increasing the total volume fraction of the filler with adequate filler size distributions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2397–2399, 2003  相似文献   

18.
An elastomeric thermal pad with a thermal conductivity of 1.45 W/m K, needed for the heat dissipation of microelectronics, was obtained with hybrid alumina of different particle sizes as a filler and silicone rubber (vinyl‐end‐blocked polymethylsiloxane) as the matrix. The effects of the amount, particle size, and mixing mass ratio of the filler particles on the thermal conductivity and mechanical properties of silicone rubber were investigated. The results indicated that the thermal conductivity of the rubber filled with larger particles was superior to that of the rubber filled with the smaller grain size, and the rubber incorporated with a mixture of hybrid particles at a preferable mass ratio exhibited higher thermal conductivity than the rubber for which a filler with only a single particle size was used. In addition, the surface treatment of the hybrid filler with 3‐methacryloyloxypropyltrimethoxysilane could increase the thermal conductivity of the composite rubber. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1312–1318, 2007  相似文献   

19.
In this work, a facile strategy is proposed to concurrently enhance both in-plane and through-plane thermal conductivity of injection molded polycarbonate (PC)-based composites by constructing a dense filler packing structure with planar boron nitride (BN) and spherical alumina (Al2O3) particles. The state of orientation of BN platelets is altered with the presence of Al2O3, which is favorable for improving both in-plane and through-plane thermal conductivity of subsequent moldings. Rheological analysis showed that the formation of intact thermal conductive pathways is crucial to the overall enhancement of thermal conductivity. Both in-plane and through-plane thermal conductivity of PC/BN(20 wt%)/Al2O3(40 wt%) composites reached as high as 1.52 and 1.09 W mK−1, which are 485% and 474% higher than that of pure PC counterparts, respectively. Furthermore, the prepared samples demonstrated excellent electrical insulation and dielectric properties which show potential application in electronic and automotive industries.  相似文献   

20.
The thermal conductivities of emulsion polymerized styrene-butadiene rubber (ESBR) vulcanizates filled with alumina (Al2O3), zinc oxide (ZnO), carbon nanotubes (CNTs), silicon carbide (SiC), are measured by steady-state method. The effects of types and loadings of the fillers and their mixture on thermal conductivities of the ESBR vulcanizates are investigated. The results show that the thermal conductivity of ESBR vulcanizates filled with alumina or zinc oxide, increases nearly linearly with increasing loading when the filler loading exceeded 20 phr; the ESBR vulcanizates filled with CNTs have the highest thermal conductivity at a given filler loading in comparison with other composite vulcanizates. At a given loading of 100 phr, the ESBR vulcanizate filled with two different particle sizes SiC of 1–3 and 5–11 μm at the mass ratio of 1:1 has the highest thermal conductivity and relatively good mechanical properties. The experimental results are analyzed using Geometric mean model and Agari’s equation to explain the effect of filler types and particle sizes on the formation of thermal conductive networks. The thermal conductivity of the ESBR vulcanizates filled with Al2O3 or ZnO or CNTs could be well predicted by optimized parameters using Agari’s equation for a polymer composite filled with mixtures of particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号