首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Effects of wood flour species and polyethylene grafted with maleic anhydride (MA‐PE) on mechanical properties and morphology and torque rheology of high density polyethylene (HDPE)/wood flour composites have been comparatively investigated. The results demonstrated that without compatbilizer, wood flour species exhibited little influence on mechanical properties. In the presence of MA‐PE, the mechanical properties were obviously increased. On the basis of the mechanical property data obtained from wood flour extracted by different methods, the extractant was an important factor affecting the mechanical properties. Manchurian ash and larch wood flours extracted by hot water presented almost the same mechanical properties, and larch wood flour was the most beneficial to enhance the mechanical properties. The scanning electron microscopy (SEM) and the atomic force microscopy (AFM) further confirmed that interfacial adhesion and dispersion of manchurian ash wood flour in composites were effectively improved by MA‐PE. The torque results demonstrated that the chemical reactions of maleic anhydride groups on MA‐PE with hydroxyl on cellulose in wood flour probably took place due to the increase of the equilibrium torque and the appearance of the torque peak, and larch wood flour was more beneficial to prepare the composites containing the higher wood flour content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
采用一种操作简便且易于工业推广的方法对木粉进行疏水改性,具体过程为:将3种可热聚合的单体,即甲基丙烯酸甲酯(MMA)、甲基丙烯酸丁酯(BMA)和苯乙烯(St)均匀喷洒在木粉上,经过预热处理后,与配方中其他组分,如高密度聚乙烯(HDPE)和马来酸酐接枝聚乙烯(MAPE)等通过高速混合机混合均匀,采用双螺杆挤出机造粒后,注射制备木塑复合材料(WPC)样条,测试其力学性能。另外,考察了疏水改性对WPC接触角、维卡软化温度、洛氏硬度、吸水性能、热性能的影响规律。结果表明:疏水改性后WPC的接触角增大,木粉和HDPE的界面相容性改善,力学性能得到明显提高。其中,当MMA、BMA和St的添加量为3%时,WPC的力学性能最好,与疏水改性前相比,弯曲强度分别提高了17.3%、26.3%和27.5%,弯曲模量分别提高了24.4%、24.4%和26.0%,冲击强度分别提高了54.7%、57.7%和60.5%。 此外,疏水改性后WPC的维卡软化温度、洛氏硬度、耐水性和耐热性也得到改善。  相似文献   

3.
Mechanical properties such as tensile and impact strength behavior of teak wood flour (TWF)‐filled high‐density polyethylene (HDPE) composites were evaluated at 0–0.32 volume fraction (Φf) of TWF. Tensile modulus and strength initially increased up to Φf = 0.09, whereas a decrease is observed with further increase in the Φf. Elongation‐at‐break and Izod impact strength decreased significantly with increase in the Φf. The crystallinity of HDPE also decreased with increase in the TWF concentration. The initial increase in the tensile modulus and strength was attributed to the mechanical restraint, whereas decrease in the tensile properties at Φf > 0.09 was due to the predominant effect of decrease in the crystallinity of HDPE. The mechanical restraint decreased the elongation and Izod impact strength. In the presence of coupling agent, maleic anhydride‐grafted HDPE (HDPE‐g‐MAH), the tensile modulus and strength enhanced significantly because of enhanced interphase adhesion. However, the elongation and Izod impact strength decreased because of enhanced mechanical restraint on account of increased phase interactions. Scanning electron microscopy showed a degree of better dispersion of TWF particles because of enhanced phase adhesion in the presence of HDPE‐g‐MAH. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
The mechanical properties of recycled low-density polyethylene/wood flour (LDPE/WF) composites are improved when a maleated triblock copolymer styrene–ethylene/butylene–styrene (SEBS–MA) is added as a compatibilizer. The composites' tensile strength reached a maximum level with 4 wt % SEBS–MA content. The compatibilizer had a positive effect on the impact strength and elongation at break but decreased the composites' stiffness. Dynamic mechanical thermal analysis (DMTA), a lap shear adhesion test, and a scanning electron microscope (SEM) were used to investigate the nature of the interfacial adhesion between the WF/SEBS and between the WF/SEBS–MA. Tan δ peak temperatures for the various combinations showed interaction between the ethylene/butylene (EB) part of the copolymer and the wood flour in the maleated system. The shear lap test showed that adhesion between the wood and SEBS–MA is better than between the wood and SEBS. The electron microscopy study of the fracture surfaces confirmed good adhesion between the wood particles and the LDPE/SEBS–MA matrix. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1845–1855, 1998  相似文献   

5.
Thermal and dynamic mechanical behaviors of wood plastic composites made of poly vinyl chloride (PVC) and surface treated, untreated wood flour were characterized by using differential scanning calorimetry and dynamic mechanical analysis. Glass transition temperature (Tg) of PVC was slightly increased by the addition of wood flour and by wood flour surface treatments. Heat capacity differences (ΔCp) of composites before and after glass transition were markedly reduced. PVC/wood composites exhibited smaller tan δ peaks than PVC alone, suggesting that less energy was dissipated for coordinated movements and disentanglements of PVC polymer chains in the composites. The rubbery plateaus of storage modulus (E′) curves almost disappeared for PVC/wood composites in contrast to a well defined plateau range for pure PVC. It is proposed that wood flour particles act as “physical crosslinking points” or “pinning centers” inside the PVC matrix, resulting in the absence of the rubbery plateau and high E′ above Tg. The mobility of PVC chain segments were further retarded by the presence of surface modified wood flour. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
The thermal and mechanical behavior of new natural polymeric composite materials after exposure to humid environments must be well known and understood in order to predict their performance in final applications. For this reason, composites made from unsaturated polyesters based on linseed oil and filled with wood flour were exposed to environments of different relative humidities and their final properties were measured. In general, the equilibrium moisture content increased as the wood flour percentage increased. Dynamic mechanical tests performed in temperature scan mode were carried out in order to monitor the changes resulting from moisture absorption on the main transition temperature of the matrix (Tα). The temperature of this transition decreased as the amount of absorbed water increased, but the effect was partially reversible by re‐drying the samples. The mechanical properties were also strongly affected by moisture. The flexural modulus and ultimate stress of the composites decreased after equilibration in humid environments. Copyright © 2006 Society of Chemical Industry  相似文献   

7.
Composites based on high density polyethylene (HDPE), pine flour, and organic clay were made by melt compounding and then injection molding. The influence of clay on crystallization behavior, mechanical properties, water absorption, and thermal stability of HDPE/pine composites was investigated. The HDPE/pine composites containing exfoliated clay were made by a two‐step melt compounding procedure with the aid of a maleated polyethylene (MAPE). The use of 2% clay decreased the crystallization temperature (Tc), crystallization rate, and the crystallinity level of the HDPE/pine composites, but did not change the crystalline thickness. When 2% MAPE was added, the crystallization rate increased, but the crystallinity level was further lowered. The flexural and tensile strength of HDPE/pine composites increased about 20 and 24%, respectively, with addition of 1% clay, but then decreased slightly as the clay content increased to 3%. The tensile modulus and tensile elongation were also increased with the addition of 1% clay. The impact strength was lowered about 7% by 1% clay, but did not decrease further as more clay was added. The MAPE improved the state of dispersion in the composites. Moisture content and thickness swelling of the HDPE/pine composites was reduced by the clay, but the clay did not improve the composite thermal stability. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
Tensile and impact properties of Neem bark flour (BF) containing high density polyethylene (HDPE) composites were studied at 0–0.26 volume fraction of filler. Tensile modulus and strength and breaking elongation decreased with increase in BF concentration. The decrease in tensile modulus and strength was attributed to the decrease in crystallinity of the polymer compared to the imposed mechanical restraint by the BF. Analysis of tensile strength data indicated formation of stress concentration in the interphase. Because of this stress concentration and the mechanical restraint, the elongation‐at‐break and Izod impact strength decreased. Use of a coupling agent, HDPE‐g‐MAH, brings about enhanced phase adhesion, increasing the tensile modulus and strength. Enhanced adhesion marginally lowers composite ductility at higher filler contents and aids stress transfer increasing the Izod impact strength inappreciably. Scanning electron microscopic studies indicated better dispersion of BF particles and enhanced interphase adhesion in presence of the coupling agent. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
Composites consisting of a conjugated linseed or soybean oil‐based thermoset reinforced with wood flour and wood fibers have been prepared by free radical polymerization. The thermoset resin consists of a copolymer of conjugated linseed oil (CLO) or conjugated soybean oil (CSO), n‐butyl methacrylate (BMA), divinylbenzene (DVB), and maleic anhydride (MA). The composites were cured at 180°C and 600 psi and postcured for 2 h at 200°C under atmospheric pressure. The effect of varying filler load, time of cure, filler particle size, origin of the fillers, and resin composition has been assessed by means of tensile tests, DMA, TGA, Soxhlet extraction followed by 1H‐NMR spectroscopic analysis of the extracts, and DSC. The best processing conditions have been established for the pine wood flour composites. It has been observed that the addition of MA to the resin composition improves the filler‐resin interaction. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Composites from SBR/PS blend and the chemically treated wood flour have been prepared. The materials used for such treatment are NaOH, MAN, MAN‐glycidyl methacrylate, and silane coupling agent, used to improve the dispersion of wood flour in the SBR/PS blend. The effects of chemical treatment on curing characteristics, and physicomechanical and electrical properties of SBR/PS composites were studied. The rheological as well as the mechanical parameters were improved by using the modified wood flour with MAN‐glycidyl methacrylate (SMG), followed by SM obtained at 15 phr, while the other treatments slightly affect these parameters. The permittivity ?′ and dielectric loss ?″ were measured in the frequency range from 100 Hz up to 100 kHz and at temperatures ranging from 30 up to 90°C. The dielectric investigations indicate that the samples containing wood flour treated with both SMG and SM increase the values of ?′ and decrease those of ?″, which allow such samples to be used in insulation purposes. The increase in the relaxation time and the crosslinking density ν for such composites indicate the increase in filler–polymer interaction rather than filler–filler interaction. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5861–5870, 2006  相似文献   

11.
The effect of grafting level of maleic anhydride (MA) in the maleated polypropylene (PPMA) on the fracture, deformation mechanisms, and mechanical properties of polypropylene (PP) wood flour composites was studied. Tensile strength, elongation at break, and impact strength are noticeably improved with addition of interfacial modifiers as maximum values of the examined mechanical properties were detected when concentration of MA in the compatibilizer was 1 wt %. To explore the microstructure and deformation mechanisms, scanning electron microscopy was employed. It was found that low concentrations of MA up to 1 wt % led to the creation of a thin and irregular polymer layer assisted formation of fibrillated plastic deformation zone around the wood particles, while the bulk PP matrix experienced voiding and brittle fracture. Higher concentrations of MA fetch to stronger interaction between PP and wood flour, the reason for brittle fracture and reduced ductility of the matrix. The impact fracture behavior of the composites during Instrumented impact tests is also discussed with respect to the interfacial bond strength. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1286–1292, 2004  相似文献   

12.
Wood flour reinforced poly(propylene carbonate) (PPC) composites were prepared by melt blending followed by compression molding. The effects of reinforcement on the morphology, static and dynamic mechanical properties, and thermal properties of PPC/wood flour composites were investigated. In terms of mechanical properties, wood flour had the significant effect of improving tensile strength and stiffness. Scanning electron microscopic examination revealed good dispersion of wood flour (especially at lower content) in the PPC matrix. Moreover, experimental results indicated that the wood flour addition led to an obvious improvement in the thermal stability of the composites. This paper demonstrates that the incorporation of low‐cost and biodegradable wood flour into PPC provides a practical way to produce completely biodegradable and cost‐competitive composites with good mechanical properties. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 782–787, 2006  相似文献   

13.
High‐density polyethylene/wood flour (HDPE/WF) composites were prepared by a twin‐screw extruder. The effects of WF, silane coupling agents, polymer compatibilizers, and their content on the comprehensive properties of the WF/HDPE composites have been studied in detail, including the mechanical, thermal, and rheological properties and microstructure. The results showed that both silane coupling agents and polymer compatibilizers could improve the interfacial adhesion between WF and HDPE, and further improve the properties of WF/HDPE composites, especially with AX8900 as a compatibilizer giving higher impact strength, and with HDPE‐g‐MAH as a compatibilizer giving the best tensile and flexural properties. The resultant composite has higher strength (tensile strength = 51.03 MPa) and better heat deflection temperature (63.1°C). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
In this work, five ternary blends based on 70% by weight (wt %) of polypropylene (PP) with 30% wt of polycarbonate (PC)/poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene)(SEBS) dispersed phase consists of 15 wt % PC and 15 wt % reactive (maleic anhydride grafted) and nonreactive SEBS mixtures at various ratios were prepared in a co‐rotating twin screw extruder. scanning electron microscopy (SEM) micrographs showed that the blends containing only nonreactive SEBS exhibited a fine dispersion of core‐shell particles. With decreasing the SEBS/SEBS‐g‐Maleic Anhydride (MAH) weight ratio, the morphology changed from the core‐shell particles to a mixed of core‐shell, rod‐like and individual particles. This variation in phase morphology affected the thermal and mechanical properties of the blends. DSC results showed that the blends containing only nonreactive SEBS exhibited a minimum in degree of crystallinity due to the homogeneous nucleation of core‐shell particles. Mechanical testing showed that in the SEBS/SEBS‐g‐MAH weight ratio of 50/50, the modulus and impact strength increased compared with the PP matrix while the yield stress had minimum difference with that of PP matrix. These effects could be attributed to the formation of those especial microstructures revealed by the SEM studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
The effect of filler content and size on the mechanical properties of a new type of wood-based filler, oil palm wood flour (OPWF), in polypropylene (PP) was investigated. Four sizes of OPWF filler at different filler loadings were compounded using a twin screw compounder. All sizes of filler showed a similar trend of declining mechanical properties with increasing filler content. In terms of size, the composites filled with larger-sized filler showed higher modulus, tensile and impact strengths, particularly at high filler loadings. The OPWF used in this study was not treated with any coupling agent.  相似文献   

16.
ABSTRACT

In this work, subcritical fluids are applied to twin-screw extruders as a novel design for the preparation of wood flour/polystyrene composites. Subcritical fluids have suitable process conditions, excellent swellability and diffusibility. Therefore, the subcritical fluids in the extruder system can alleviate the thermal degradation of wood floor, reduce the viscosity of the resin and strengthen the mass transfer rate. Wood flour evenly distributed in the polystyrene matrix in the presence of subcritical n-propanol. The best adhesion between wood flour and PS is shown when 10?wt-% MAPS is added. MAPS was confirmed to be grafted onto wood flour. In addition, the thermal stability and crystallinity of wood flour and the composites are studied. Mechanical tests proved the effectiveness of subcritical fluids, particularly subcritical n-propanol, in improving the mechanical properties of the composites. The extrusion temperature and content of MAPS show optimum values at 190°C and 10%, respectively.  相似文献   

17.
Phase‐change materials based on high density polyethylene (HDPE), soft Fischer‐Tropsch paraffin wax (M3), and alkali‐treated wood flour (WF) were investigated. The blend and composite samples were prepared by melt mixing using a Brabender Plastograph, followed by melt pressing. They were characterized in terms of their morphology, as well as thermal, mechanical, thermo‐mechanical, and water absorption properties. Although SEM micrographs showed some evidence of intimate contact between the WF particles and the HDPE matrix as a result of alkali treatment, poor filler dispersion, and interfacial adhesion were also observed. Partial immiscibility of the HDPE and the M3 wax was noticed, with the WF particles covered by wax. There was plasticization of the HDPE matrix by the wax, as well as partial cocrystallization, inhomogeneity and uneven wax dispersion in the polymer matrix. The HDPE/WF/M3 wax composites were more homogeneous than the blends. The presence of wax reduced the thermal stability of the blends and composites. Both the presence of M3 wax and WF influenced the viscoelastic behavior of HDPE. The HDPE/M3 wax blends showed an increase in the interfacial amorphous content as the wax content increases, which resulted in the appearance of a β‐relaxation peak. The presence of M3 wax in HDPE reduced the mechanical properties of the blends. For the composites these properties varied with WF content. An increase in wax content resulted to a decrease in water uptake by the composites, probably because the wax covered the WF particles and penetrated the pores in these particles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
The mechanical properties and morphology of polypropylene/wood flour (PP/WF) composites with different impact modifiers and maleated polypropylene (MAPP) as a compatibilizer have been studied. Two different ethylene/propylene/diene terpolymers (EPDM) and one maleated styrene–ethylene/butylene–styrene triblock copolymer (SEBS–MA) have been used as impact modifiers in the PP/WF systems. All three elastomers increased the impact strength of the PP/WF composites but the addition of maleated EPDM and SEBS gave the greatest improvements in impact strength. Addition of MAPP did not affect the impact properties of the composites but had a positive effect on the composite unnotched impact strength when used together with elastomers. Tensile tests showed that MAPP had a negative effect on the elongation at break and a positive effect on tensile strength. The impact modifiers were found to decrease the stiffness of the composites. Scanning electron microscopy showed that maleated EPDM and SEBS had a stronger affinity for the wood surfaces than did the unmodified EPDM. The maleated elastomers are, therefore, expected to form a flexible interphase around the wood particles giving the composites better impact strength. MAPP further enhanced adhesion between WF and impact-modified PP systems. EPDM and EPDM–MA rubber domains were homogeneously dispersed in the PP matrix, the diameter of domains being between 0.1–1 μm. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1503–1513, 1998  相似文献   

19.
The effects of various types of compatibilizers on the mechanical properties of high‐density polyethylene/wood flour composites were investigated. Functionalized polyolefins, including maleated polyethylenes, polypropylene, and styrene–ethylene/butylene–styrene copolymer, were incorporated to reduce the interfacial tension between the polyethylene matrix and wood filler. Of these, maleated linear low‐density and high‐density polyethylenes gave higher tensile and impact strengths for the composites, presumably because of their better compatibility with the high‐density polyethylene matrix. Similar but less enhanced improvements in the mechanical properties, depending on the compatibilizer loading, were seen for a maleated styrene–ethylene/butylene–styrene triblock copolymer, whereas maleated polypropylene only slightly improved the tensile modulus and tensile strength, which increased with increasing compatibilizer loadings. Scanning electron microscopy was used to reveal the interfacial region and confirm these findings. Dynamic mechanical thermal measurements showed the interaction between the filler and the matrix. Fourier transform infrared spectroscopy was used to assign the chemical fixation and the various chemical species involved on the surfaces of the fillers before and after surface treatment. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 487–496, 2003  相似文献   

20.
程奎  沈经纬 《现代化工》2006,26(6):40-44
用挤出-拉伸-注塑法制得了高密度聚乙烯/聚对苯二甲酸乙二醇酯(HDPE/PET)原位成纤增强复合材料,研究了PET质量分数对PET成纤性和材料拉伸强度及模量的影响及其作用机制。熔体拉伸时分散相液滴的聚结-形变成纤对PET相形态随PET质量分数的变化起关键作用,分散相对基体增强效应和两相界面缺陷效应相互竞争是决定拉伸强度随PET质量分数变化的重要因素,纤维对基体增刚作用受纤维数量和细度的双重控制是决定材料拉伸模量与PET质量分数关系的支配因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号