共查询到20条相似文献,搜索用时 19 毫秒
1.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)(PHBV)/poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) blend films were prepared by solvent‐cast method. The nonisothermal crystallization results showed that PHBV and P3/4HB are miscible due to a single glass transition temperature (Tg), which is dependent on blend composition. The isothermal crystallization results demonstrate that the crystallization rate of PHBV becomes slower after adding amorphous P3/4HB with 19.2 mol% 4HB, which could be proved through depression of equilibrium melt point ($T_m^o$ ) from 183.7°C to 177.6°C. For pure PHBV and PHBV/P3/4HB (80/20) blend, the maximum crystallization rate appeared at 88°C and 84°C, respectively. FTIR analysis showed that PHBV/P3/4HB blend films would maintain the helical structure, similar to pure PHBV. Meanwhile, with increasing P3/4HB content, the inter‐ and intra‐interactions of PHBV and P3/4HB decrease gradually. Besides, a lower elastic modulus and a higher elongation at break were obtained, which show that the addition of P3/4HB would make the brittle PHBV to ductile materials. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
2.
Naturally amorphous biopolyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) containing 21 mol % of 4HB was blended with semi‐crystal poly(butylene succinate) (PBS) with an aim to improve the properties of aliphatic polyesters. The effect of PBS contents on miscibility, thermal properties, crystallization kinetics, and mechanical property of the blends was evaluated by DSC, TGA, FTIR, wide‐angle X‐ray diffractometer (WAXD), Scanning Electron Microscope (SEM), and universal material testing machine. The thermal stability of P3/4HB was enhanced by blending with PBS. When PBS content is less than 30 wt %, the two polymers show better miscibility and their crystallization trend was enhanced by each other. The optimum mechanical properties were observed at the 5–10 wt % PBS blends. However, when the PBS content is more than 30 wt %, phase inversion happened. And the two polymers give lower miscibility and poor mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
3.
Biopolyesters poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) with an 11 mol % 4HB content [P(3HB‐co‐11%‐4HB)] and a 33 mol % 4HB content [P(3HB‐co‐33%‐4HB)] were blended by a solvent‐casting method. The thermal properties were investigated with differential scanning calorimetry. The single glass‐transition temperature of the blends revealed that the two components were miscible when the content of P(3HB‐co‐33%‐4HB) was less than 30% or more than 70 wt %. The blends, however, were immiscible when the P(3HB‐co‐33%‐4HB) content was between 30 and 70%. The miscibility of the blends was also confirmed by scanning electron microscopy morphology observation. In the crystallite structure study, X‐ray diffraction patterns demonstrated that the crystallites of the blends were mainly from poly(3‐hydroxybutyrate) units. With the addition of P(3HB‐co‐33%‐4HB), larger crystallites with lower crystallization degrees were induced. Isothermal crystallization was used to analyze the melting crystallization kinetics. The Avrami exponent was kept around 2; this indicated that the crystallization mode was not affected by the blending. The equilibrium melting temperature decreased from 144 to 140°C for the 80/20 and 70/30 blends P(3HB‐co‐11%‐4HB)/P(3HB‐co‐33%‐4HB). This hinted that the crystallization tendency decreased with a higher P(3HB‐co‐33%‐4HB) content. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
4.
Liang Wang Xiaojuan Wang Wenfu Zhu Zhifei Chen Jueyu Pan Kaitian Xu 《应用聚合物科学杂志》2010,116(2):1116-1123
Boron nitride (BN), talc, hydroxyapatite (HA), and zinc stearate (ZnSt) were investigated as nucleation agents (NA) for nonfossil‐based poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) plastics. Nonisothermal crystallization behaviors of the P3/4HB/NA blends were examined by DSC. It revealed that BN is the most efficient nucleation agent to promote the crystallization rate, however, but not the crystallization degree. The lasting crystallization of P3/4HB was also removed. The nucleation effect was strengthened with increase of BN content up to 1% and then slackened deeply when further BN was added. Isothermal crystallization analysis revealed that the addition of nucleation agent BN does not alter the crystal growth mode of P3/4HB, with maintaining the Avrami parameter n value around 2.40. Talc did enhance the crystallization of P3/4HB with however milder crystal growth rate. HA and ZnSt did not promote, but depressed the crystallization of P3/4HB plastics. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
5.
Blends of synthetic poly(propylene carbonate) (PPC) with a natural bacterial copolymer of 3‐hydroxybutyrate with 3‐hydroxyvalerate (PHBV) containing 8 mol % 3‐hydroxyvalerate units were prepared with a simple casting procedure. PPC was thermally stabilized by end‐capping before use. The miscibility, morphology, and crystallization behavior of the blends were investigated by differential scanning calorimetry, polarized optical microscopy, wide‐angle X‐ray diffraction (WAXD), and small‐angle X‐ray scattering (SAXS). PHBV/PPC blends showed weak miscibility in the melt, but the miscibility was very low. The effect of PPC on the crystallization of PHBV was evident. The addition of PPC decreased the rate of spherulite growth of PHBV, and with increasing PPC content in the PHBV/PPC blends, the PHBV spherulites became more and more open. However, the crystalline structure of PHBV did not change with increasing PPC in the PHBV/PPC blends, as shown from WAXD analysis. The long period obtained from SAXS showed a small increase with the addition of PPC. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 4054–4060, 2003 相似文献
6.
The hydrogen bonding, miscibility, crystallization, and thermal stability of poly(3‐hydroxybutyrate) (PHB)/4‐tert‐butylphenol (BOH) blends and poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) [P(3HB‐3HHx)]/BOH blends were investigated by Fourier transform infrared (FTIR) spectroscopy, solid‐state13C‐NMR, differential scanning calorimetry, wide‐angle X‐ray diffraction (WAXD), and thermogravimetric analysis. The results of FTIR spectroscopy and solid‐state13C‐NMR show that intermolecular hydrogen bonds existed between the two components in the blends and that the interaction was caused by the carbonyl groups in the amorphous phase of both polyesters and the hydroxyl groups of BOH. With increasing BOH content, the chain mobility of both the PHB and P(3HB‐3HHx) components was improved. After the samples were quenched, the detected single glass‐transition temperatures decreased with composition, indicating that both PHB/BOH and P(3HB‐3HHx)/BOH were miscible blends in the melt. Moreover, as BOH content increased, the melting temperatures of PHB and P(3HB‐3HHx) clearly decreased, which implied that their crystallization was suppressed by the addition of BOH. Although the crystallinity of PHB and P(3HB‐3HHx) components decreased with increasing BOH content in the blends, their crystal structures were hardly affected after they were blended with BOH, which was further proven by WAXD results. In addition, the thermal stability of PHB was improved by a smaller amount of BOH. 相似文献
7.
Structure and mechanical properties for binary blends composed of a poly(3‐hydroxybutyrate) (PHB) and a cellulose derivative, such as cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB), have been studied by means of dynamic mechanical analysis, isothermal crystallization measurements, and tensile testing. It is found that β relaxation temperature due to glass transition of PHB or PHB‐rich phase in the blends, in which the cellulose derivative has lower molecular weight, is almost the same as that of the pure PHB. On the other hand, the peak location is shifted to even lower temperature than that of the pure PHB by blending the cellulose derivative with higher molecular weight, although the cellulose derivative is a glassy polymer with high glass transition temperature. Further, the blend with lower β relaxation temperature exhibits ductile behavior with low modulus in uniaxial deformation. The difference in the structure and mechanical properties for the blends are found to be determined by the crystallization rate. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3447–3452, 2007 相似文献
8.
The miscibility and hydrogen bonding interaction in the poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate)/poly(4‐vinyl phenol) [P(3HB‐co‐3HH)/PVPh] binary blends were investigated by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The DSC results indicate that P(3HB‐co‐3HH) with 20 mol % 3HH unit content is fully miscible with PVPh, and FTIR studies reveal the existence of hydrogen bonding interaction between the carbonyl groups of P(3HB‐co‐3HH) and the hydroxyl groups of PVPh. The effect of blending of PVPh on the mechanical properties of P(3HB‐co‐3HH) were studied by tensile testing. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
9.
Hsiu‐Jung Chiu 《应用聚合物科学杂志》2004,91(6):3595-3603
The miscibility and crystallization kinetics of the blends of random poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(HB‐co‐HV)] copolymer and poly(methyl methacrylate) (PMMA) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that P(HB‐co‐HV)/PMMA blends were miscible in the melt. Thus the single glass‐transition temperature (Tg) of the blends within the whole composition range suggests that P(HB‐co‐HV) and PMMA were totally miscible for the miscible blends. The equilibrium melting point (T°m) of P(HB‐co‐HV) in the P(HB‐co‐HV)/PMMA blends decreased with increasing PMMA. The T°m depression supports the miscibility of the blends. With respect to the results of crystallization kinetics, it was found that both the spherulitic growth rate and the overall crystallization rate decreased with the addition of PMMA. The kinetics retardation was attributed to the decrease in P(HB‐co‐HV) molecular mobility and dilution of P(HB‐co‐HV) concentration resulting from the addition of PMMA, which has a higher Tg. According to secondary nucleation theory, the kinetics of spherulitic crystallization of P(HB‐co‐HV) in the blends was analyzed in the studied temperature range. The crystallizations of P(HB‐co‐HV) in P(HB‐co‐HV)/PMMA blends were assigned to n = 4, regime III growth process. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3595–3603, 2004 相似文献
10.
Hsiu‐Jung Chiu 《应用聚合物科学杂志》2006,100(2):980-988
The miscibility and crystallization behavior of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (P(HB‐co‐HV))/poly(vinyl acetate) (PVAc) blends have been investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that P(HB‐co‐HV)/PVAc blends were miscible in the melt over the whole compositions. Thus the blend exhibited a single glass transition temperature (Tg), which increased with increasing PVAc composition. The spherulitic morphologies of P(HB‐co‐HV)/PVAc blends indicated that the PVAc was predominantly segregated into P(HB‐co‐HV) interlamellar or interfibrillar regions during P(HB‐co‐HV) crystallization because of the volume‐filled spherulites. As to the crystallization kinetics study, it was found that the overall crystallization and crystal growth rates decreased with the addition of PVAc. The kinetics retardation was primarily attributed to the reduction of chain mobility and dilution of P(HB‐co‐HV) upon mixing with higher Tg PVAc. The overall crystallization rate was predominantly governed by the spherulitic growth rate and promoted by the samples treated with the quenched state because of the higher nucleation density. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 980–988, 2006 相似文献
11.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV)/phenolic blends are new miscible crystalline/amorphous polymer blends prepared via solution casting method in this work, as evidenced by the single composition dependent glass transition temperature. The measured Tgs can be well fitted by the Kwei equation with a q value of 13.6 for the PHBV/phenolic blends, indicating that the interaction between the two components is strong. The negative polymer–polymer interaction parameter, obtained from the melting depression of PHBV using the Nishi‐Wang equation, indicating the thermal miscibility of PHBV and phenolic. The spherulitic morphology and crystal structure of PHBV/phenolic blends were studied with polar optical microscopy and wide angle X‐ray diffraction compared with those of neat PHBV. It is found that the growth rates of PHBV in the blends are lower than that in neat PHBV at a given crystallization temperature, and the crystal structure of PHBV is not modified by the presence of phenolic in the PHBV/phenolic blends, but the crystallinity decrease with the increasing of phenolic. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
12.
Sossio Cimmino Edoardo D'Alma Maria Di Lorenzo Clara Silvestre 《Polymer International》2004,53(6):809-814
Miscibility and properties of two atactic poly(methyl methacrylate)‐based blends [containing 10 and 20% of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)] have been investigated as a function of thermal treatments. Differential scanning calorimetry and dynamic mechanical thermal analysis of blends quenched in liquid nitrogen or ice/water, after annealing at T > 190 °C, showed a single glass transition temperature, indicating miscibility of the components for the time‐temperature history. Two glass transition temperatures, equal to those of the pure components, are instead found for blends after annealing at T < 190 °C. Scanning electron microscopy confirmed the homogeneity for the former quenched blends and phase separation for the latter. These results indicate the presence of an upper critical solution temperature (UCST). Tensile experiments, performed on two series of samples annealed at temperatures above and below the UCST, showed that the copolyester induces a decrease of Young's modulus and stresses at yielding and break points, and a marked increase of elongation at break. Differences in tensile properties between the two series of annealed blends are accounted for by the physical state of the components at room temperature after annealing above or below the UCST. Copyright © 2004 Society of Chemical Industry 相似文献
13.
The effect of end groups (2NH2) of poly(ethylene glycol) (PEG) on the miscibility and crystallization behaviors of binary crystalline blends of PEG/poly(L ‐lactic acid) (PLLA) were investigated. The results of conductivity meter and dielectric analyzer (DEA) implied the existence of ions, which could be explained by the amine groups of PEG gaining the protons from the carboxylic acid groups of PLLA. The miscibility of PEG(2NH2)/PLLA blends was the best because of the ionic interaction as compared with PEG(2OH, 1OH‐1CH3, and 2CH3)/PLLA blends. Since the ionic interaction formed only at the chain ends of PEG(2NH2) and PLLA, unlike hydrogen bonds forming at various sites along the chains in the other PEG/PLLA blend systems, the folding of PLLA blended with PEG(2NH2) was affected in a different manner. Thus the fold surface free energy played an important role on the crystallization rate of PLLA for the PEG(2NH2)/PLLA blend system. PLLA had the least fold surface free energy and the fast crystallization rate in the PEG(2NH2)/PLLA blend system, among all the PEG/PLLA systems studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
14.
The miscibility, crystallization behavior, tensile properties, and environmental biodegradability of poly(β‐hydroxybutyrate) (PHB)/cellulose acetate butyrate (CAB) blends were studied with differential scanning calorimetry, scanning electron microscopy, wide‐angle X‐ray diffraction, and polarizing optical microscopy. The results indicated that PHB and CAB were miscible in the melt state. With an increase in the CAB content, the degree of crystallinity and melting temperature of the PHB phase decreased, and this broadened the narrow processability window of PHB. As the elongation at break increased from 2.2 to 7.3%, the toughness and ductility of PHB improved. From the degradation test, it could be concluded that degradation occurred gradually from the surface to the inside and that the degradation rate could be adjusted by the addition of the CAB content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2116–2122, 2003 相似文献
15.
Miscibility and crystallization behaviors of biodegradable poly(butylene succinate‐co‐butylene terephthalate) (PBST)/poly(hydroxyl ether biphenyl A) (phenoxy) blends were investigated with various techniques in this work. PBST and phenoxy are completely miscible as evidenced by the single composition‐dependent glass transition temperature over the entire blend compositions. Nonisothermal melt crystallization peak temperature is higher in neat PBST than in the blends at a given cooling rate. Isothermal melt crystallization kinetics of neat and blended PBST was studied and analyzed by the Avrami equation. The overall crystallization rate of PBST decreases with increasing crystallization temperature and the phenoxy content in the PBST/phenoxy blends; however, the crystallization mechanism of PBST does not change. Moreover, blending with phenoxy does not modify the crystal structure but reduces the crystallinity degree of PBST in the PBST/phenoxy blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
16.
Isothermal and non‐isothermal crystallization kinetics of microbial poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) [P(3HB‐3HHx)] was investigated by differential scanning calorimetry (DSC) and 13C solid‐state nuclear magnetic resonance (NMR). Avrami analysis was performed to obtain the kinetic parameters of primary crystallization. The results showed that the Avrami equation was suitable for describing the isothermal and non‐isothermal crystallization processes of P(3HB‐3HHx). The equilibrium melting temperature of P(3HB‐3HHx) and its nucleation constant of crystal growth kinetics, which were obtained by using the Hoffman–Weeks equation and the Lauritzen–Hoffmann model, were, respectively, 121.8 °C and 2.87 × 105 K2 when using the empirical ‘universal’ values of U* = 1500 cal mol?1. During the heating process, the melting behaviour of P(3HB‐3HHx) for both isothermal and non‐isothermal crystallization showed multiple melting peaks, which was the result of melting recrystallization. The lower melting peak resulted from the melting of crystals formed during the corresponding crystallization process, while the higher melting peak resulted from the recrystallization that took place during the heating process. Copyright © 2005 Society of Chemical Industry 相似文献
17.
Eun‐Soo Park Hye Kyung Kim Jae Hun Shim Hun Sik Kim Lee Wook Jang Jin‐San Yoon 《应用聚合物科学杂志》2004,92(6):3508-3513
Poly(L ‐lactide) (PLLA) and poly(3‐hydrobutyrate‐co‐3‐hydroxyvalerate) (PHBV) were blended with poly(butadiene‐co‐acrylonitrile) (NBR). Both PLLA/NBR and PHBV/NBR blends exhibited higher tensile properties as the content of acrylonitrile unit (AN) of NBR increased from 22 to 50 wt %. However, two separate glass transition temperatures (Tg) appeared in PLLA/NBR blends irrespective of the content of NBR, revealing that PLLA was incompatible with NBR. In contrast, a single Tg, which shifted along with the blend composition, was observed for PHBV/NBR50 blends. Moreover NBR50 suppressed the crystallization of PHBV, indicating that PHBV was compatible with NBR50. Decrease of both elongation modulus and stress at maximum load was less significant and increase of elongation at break was more pronounced in PHBV/NBR50 blends than in PLLA/NBR50 blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3508–3513, 2004 相似文献
18.
Zhifang Yu Yaya Yang Linlin Zhang Yongchao Ding Xiangming Chen Kaitian Xu 《应用聚合物科学杂志》2012,126(3):822-829
Biobased non‐fossil polyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) containing 4.0 mol % 4‐hydroxybutyrate (4HB) was melt‐mixed with short glass fibers (SGF) via a co‐rotating twin‐screw extruder. The compositing conditions, average glass fiber length and distribution, thermal, crystallization, and mechanical properties of the P3/4HB/SGF composites were investigated. Calcium stearate, two kinds of paraffin wax and modified ethylene bis‐stearamide (TAF) were investigated as lubricants for the P3/4HB/SGF composites. It revealed that TAF is the most efficient lubricant of the P3/4HB/SGF composites. Coupling agents 2,2′‐(1,3‐phenylene)bis‐2‐oxazoline (1,3‐PBO) and pyromellitic dianhydride (PMDA) were used as end‐group crosslinkers to reduce the degradation of P3/4HB and increase the mechanical properties of the P3/4HB/SGF composites. It showed that 1,3‐PBO is the efficient coupling agent. The optimum condition of the P3/4HB/SGF composites is 1.5 phr TAF, 1.0 phr 1,3‐PBO, and 30 wt % glass fiber content. And the maximum of tensile strength, tensile modulus, and impact strength of the composites is 3.7, 6.6, 1.8 times of the neat P3/4HB polymer, respectively. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
19.
Bacterial polyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) containing 5 mol% 4HB was composited with different calcium carbonate (CaCO3) fillers. The effect of CaCO3 contents on thermal properties, mechanical property, and crystallization kinetics was evaluated. The thermal stability of P3/4HB was reduced by mixing with CaCO3 particles. With increasing CaCO3 content, the elongation at break, tensile strength, and impact strength decrease; however, elastic modulus increases. When P3/4HB with 20 mol% 4HB was added into the P3/4HB/CaCO3 composite, the impact strength were enhanced significantly; however, the elongation at break and tensile strength were only slight to moderate improvements. However, when compared with nano‐ and light‐CaCO3, heavy CaCO3 had the best mechanical properties. The nonisothermal and isothermal crystallization results demonstrated that the crystallization rate of P3/4HB was reduced and the highest crystallinity was obtained for all kinds of CaCO3 fillers at 40 phr content. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers 相似文献
20.
Mechanical and thermal properties of poly(butylene succinate)/poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) biodegradable blends 下载免费PDF全文
Biodegradable polymer blends of poly(butylene succinate) (PBS) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) were prepared with different compositions. The mechanical properties of the blends were studied through tensile testing and dynamic mechanical thermal analysis. The dependence of the elastic modulus and strength data on the blend composition was modeled on the basis of the equivalent box model. The fitting parameters indicated complete immiscibility between PBS and PHBV and a moderate adhesion level between them. The immiscibility of the parent phases was also evidenced by scanning electron observation of the prepared blends. The thermal properties of the blends were studied through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results showed an enhancement of the crystallization behavior of PBS after it was blended with PHBV, whereas the thermal stability of PBS was reduced in the blends, as shown by the TGA thermograms. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42815. 相似文献