首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this work was to characterize a novel quaternary chitosan derivative [O‐(2‐hydroxyl) propyl‐3‐trimethyl ammonium chitosan chloride (O‐HTCC)] nanoparticle system. O‐HTCC nanoparticles were prepared with a simple and mild ionic gelation method upon the addition of a sodium tripolyphosphate solution to a low‐molecular‐weight O‐HTCC solution. Highly cationic chitosan nanoparticles were prepared. Bovine serum albumin (BSA), a model protein drug, was incorporated into the nanoparticles. The physicochemical properties of the nanoparticles were determined with transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared analysis, differential scanning calorimetry, and X‐ray diffraction (XRD) patterns. The results showed that increasing the BSA concentration from 1.5 to 2.5 mg/mL promoted the BSA encapsulation efficiency from 57.3% to 87.5% and the loading capacity from 70.2% to 99.5%. Compared with the chitosan nanoparticles, the O‐HTCC nanoparticles had lower burst release. TEM revealed that the BSA‐loaded O‐HTCC nanoparticles were smaller than the O‐HTCC nanoparticles when the BSA concentration was 1.5 mg/mL; SEM showed that the size of the BSA‐loaded O‐HTCC nanoparticles was mostly affected by the BSA concentration, and the increase in size occurred with the concentration increasing. Thermograms and XRD of the BSA‐loaded nanoparticles suggested that polyelectrolyte–protein interactions increased with the BSA concentration increasing and greater chain realignment in the BSA‐loaded nanoparticles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
N‐(2‐Hydroxy)propyl‐3‐trimethylammonium chitosan chloride (HTCC) was synthesized by the reaction of glycidyltrimethylammonium chloride (GTMAC) and chitosan. The reaction product was a water‐soluble chitosan derivative, and showed excellent antimicrobial activity. HTCC was blended with polyacrylonitrile (PAN) using an NaSCN aqueous solution as a common solvent. The blend solution was transparent and stable up to 6 months without phase separation. The PAN/HTCC blend fibers were prepared via a wet spinning and drawing process. Thermal, electrical, and mechanical properties as well as antimicrobial activity were investigated. It was found that the antistatic property and antimicrobial activity of the blend fibers could be achieved by adding only a small amount of HTCC. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2258–2265, 1999  相似文献   

3.
The venlafaxine hydrochloride (VHL)‐loaded chitosan nanoparticles were prepared by ionic gelation of chitosan (CS) using tripolyphosphate (TPP). The nanoparticles were characterized using FTIR, differential scanning calorimetry, X‐ray diffraction, dynamic light scattering, transmission electron microscopy, and X‐ray photoelectron spectroscopy. The effect of concentration of CS, polyethylene glycol (PEG), VHL and CS/TPP mass ratio on the particle size and zeta potential of nanoparticles was examined. The particle size of CS/TPP nanoparticles and VHL‐loaded CS/TPP nanoparticles was within the range of 200–400 nm with positive surface charge. In the case of VHL‐loaded nanoparticles and PEG‐coated CS/TPP nanoparticles, the particle size increases and surface charge decreases with increasing concentration of VHL and PEG. Both placebo and VHL‐loaded CS/TPP nanoparticles were observed to be spherical in nature. PEG coating on the surface of CS/TPP nanoparticles was confirmed by XPS analysis. Maximum drug entrapment efficiency (70%) was observed at 0.6 mg/mL drug concentration. In vitro drug release study at 37°C ± 0.5°C and pH 7.4 exhibited initial burst release followed by a steady release. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
In this research, the controlled release of proteins from magnetite (Fe3O4)–chitosan (CS) nanoparticles exposed to an alternating magnetic field is reported. Fe3O4–CS nanoparticles were synthesized with sodium tripolyphosphate (TPP) molecules as a crosslinking reagent. Bovine serum albumin (BSA) was used as a model protein, and its controlled release studied through the variation of the frequency of an alternating magnetic field. The results show the successful coating of CS and BSA on the Fe3O4 nanoparticles with an average diameter of 50 nm. Intermolecular interactions of TPP with CS and BSA were confirmed by Fourier transform infrared spectroscopy. The application of low‐frequency alternating magnetic fields to such magnetic CS nanoparticles enhanced the protein release properties, in which the external magnetic fields could switch on the unloading of these nanoparticles. We concluded that enhanced BSA release from nanoparticles exposed to an alternating magnetic field is a promising method for achieving both the targeted delivery and controlled release of proteins. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43335.  相似文献   

5.
Electrospun nylon-6/chitosan (nylon-6/Ch) nanofibers were prepared by nanospider technology. Quaternary ammonium salts as antibacterial agent were immobilized onto electrospun nylon-6/Ch nanofibers via surface modification by soaking the mat in aqueous solution of glycidyltrimethylammonium chloride (GTMAC) at room temperature overnight to give nylon-6/N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride (nylon-6/HTCC). The morphological, structural and thermal properties of the nylon-6/ch nanofibers were studied by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). Biological screening has demonstrated the antibacterial activity of the electrospun nanofibers against Gram negative bacteria, Escherichia coli 35218, and Pseudomonas aeruginosa and Gram positive bacteria, Staphylococcus aureus 24213 among the tested microbes. Thus, the study ascertains the value of the use of electrospun nanofibers, which could be of considerable interest to the development of new antibacterial materials for biomedical applications.  相似文献   

6.
晚香玉香精壳聚糖纳米粒的制备及表征   总被引:1,自引:1,他引:0  
以三聚磷酸钠(TPP)为交联剂,通过离子凝胶法制备晚香玉香精壳聚糖纳米粒。研究了壳聚糖质量浓度、香精质量浓度、乳化剂与香精的质量比及反应时间对晚香玉香精壳聚糖纳米粒粒径的影响,并采用动态激光光散射仪(DLS)、透射电镜(TEM)、红外光谱仪(IR)及热重分析仪(TGA)对其结构及性能进行了表征。结果表明,当壳聚糖质量浓度为1.71 g/L、香精质量浓度为1.72 g/L、m(乳化剂)∶m(香精)=1∶2、反应时间为1 h时,制备的晚香玉香精壳聚糖纳米粒平均粒径为138 nm,粒径分布系数为0.100,香精装载量达28.4%,能减缓高温下香精的释放速率。  相似文献   

7.
To inhibit the ototoxicity of gentamicin (GM) and overcome the drawback related to chitosan (CS) nanoparticles preparation in acid solution, O‐carboxymethyl chitosan (O‐CMC) nanoparticles loaded with GM and salicylic acid (SA) were prepared by ionic cross‐linking method using calcium chloride as crosslinking agent. The Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) were used to analyze the reaction of O‐CMC and crosslinking agent. The parameters of preparation of the compound nanoparticles including the concentration of O‐CMC, the mass ratio of O‐CMC to calcium chloride, and the feed ratio of SA to GM were investigated. The results showed that the obtained nanoparticles had a high zeta potential and drug‐loading capacity. The nanoparticles were characterized by a spherical morphology, with average size ranging from 148 to 345 nm and a narrow particle size distribution. In vitro release studies in phosphate buffer saline (pH 7.4) evidenced a burst release in the first 1 h, followed by a sustained release in the residual time. The release amount of SA and GM were approximately equal in 24 h, which indicated that the SA‐ and GM‐loaded O‐CMC nanoparticles are a promising carrier system for inhibiting the ototoxicity of GM. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
A water‐soluble chitosan derivative of N‐(2‐hydroxy)propyl‐3‐trimethylammonium chitosan chloride (HTCC), synthesized by the reaction of chitosan and glycidyltrimethyl ammonium chloride, and polyacrylonitrile (PAN) were blended using 46% (w/w) NaSCN aqueous solution as a common solvent. The total polymer concentration of blend solution was fixed at 12% (w/w), and the relative composition of PAN/HTCC in the blend solution varied from 0/100 to 80/20 by weight. The PAN/HTCC blend fibers with the appropriate physical property were prepared by a wet spinning and drawing process. The effect of HTCC content on the structural change, miscibility, and ability to be dyed of the blend fibers was investigated. The optical and scanning electron microscopic observation gave no indication of phase separation up to 20% HTCC content. Differential scanning calorimetry and dynamic mechanical measurements of the blend fibers show single glass transition temperatures that increase with increasing blend ratio of HTCC. All the experimental results exhibit that the blends are miscible on the molecular scale. The blend fibers could be dyed with an acid dye. This enhanced ability of the blend fibers to be dyed with acid dyes could be useful for one‐step dyeing when mixed with other fibers, such as wool and nylon. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1620–1629, 2001  相似文献   

9.
李凤生  罗付生 《精细化工》2003,20(4):197-200
利用聚电解质的离子凝胶反应,在溶液中壳聚糖为聚阳离子电解质与带反相电荷的聚阴离子三聚磷酸钠(TPP)发生离子凝胶反应,在合适的浓度和适当的搅拌速度下,得到亚微米级的壳聚糖微球。利用环己烷作为油相,以壳聚糖溶液为水相,配制澄清透明的W/O反相微乳清液,滴加质量浓度为5mg/mL的TPP溶液于已配制好的微乳清液中,制得纳米级壳聚糖微球。采用上述两种方法制得的纳米/亚微米壳聚糖微球用作生物降解药物载体,载药实验结果表明,释放初期无明显暴释现象,具有良好的药物缓释作用。  相似文献   

10.
Delivery and sustained release of toothpaste actives is an important but unexplored area. In this work, chitosan nanoparticles were prepared by a water‐in‐oil emulsion/glutaraldehyde crosslinking method. The typical number average diameter of chitosan and toothpaste active (cetylpyridiniumchloride and NaF) nanoparticles was within the range of 100–500 nm. The particles increased their size at higher pH value. The morphology, adherence, and stability of these nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and X‐ray photoelectron spectroscopy. The size of the chitosan/NaF nanoparticles was doubled after they were stored at 4°C for 20 days, and then kept constant till 251 days, the examined time so far. These particles showed good stability in toothpaste lixivium after incubated at 60°C for 30 days too. By contrast, the chitosan/cetylpyridiniumchloride nanoparticles were easy to form floccules in the toothpaste lixivium. The loaded toothpaste actives showed a sustained released behavior for at least 10 h. All the particles could adhere onto the tooth analogs such as hydroxyapatite discs and glass slides in a simulated brushing and rinsing process. In vitro cell culture did not find any cytotoxicity of the as‐prepared chitosan nanoparticles. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
郑红  韩景田  丁媛媛  杨帆 《化工进展》2014,33(1):174-177,186
采用化学共沉淀法制备磁性Fe3O4纳米粒子,以(3-氯丙基)三甲氧基硅烷为偶联剂将壳聚糖共价键合到磁性Fe3O4纳米粒子的表面,通过红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)及热重分析(TGA)对其进行了表征。主要研究了不同影响因素(吸附时间、pH值、牛血清白蛋白浓度)下壳聚糖修饰的磁性纳米粒子对牛血清白蛋白(BSA)的吸附性能。结果得到壳聚糖修饰的磁性Fe3O4纳米粒子粒径为20 nm左右,壳聚糖在磁性Fe3O4纳米粒子表面的接枝率为15.40%。研究表明:在不同条件下,与未修饰的磁性Fe3O4纳米粒子相比,经壳聚糖修饰的Fe3O4纳米粒子对BSA均表现出较强的吸附能力。  相似文献   

12.
A water-soluble chitosan derivative namely, N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC) was synthesized by the reaction of chitosan with glycidyltrimethyl ammonium chloride in a neutral aqueous condition and solution blended with polyacrylonitrile (PAN) in an organic solvent. Polymeric films were made by casting, and they were dyed with an acid dye, a basic dye, and mixture of them. Results obtained from differential scanning calorimetry, scanning electron microscopy, and dyeing show that these polymers are immiscible even at low percentage of HTCC (lower than 20%). However, at higher ratio, the phase separation takes place. Fibers obtained from this blend system by wet-spinning technique show a good mechanical properties and increasing the amount of HTCC causes an increment in the mechanical strength of the fibers up to 20% of HTCC and beyond that due to phase separation mechanical strength reduces. Blending PAN with HTCC improves the dyeing behavior of the films and fibers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Model bioactive compounds with different molecular and functional characteristics were entrapped in gel beads prepared by polyelectrolyte complexation of chitosan and pentasodium tripolyphosphate (TPP). Three compounds of interest to the food and biomedical industries were tested: (1) lysine, (2) bovine serum albumin (BSA), and (3) β‐galactosidase. Effects of the compound concentration in the initial chitosan solution, pH of the curing solution, and length of the curing phase on the capture efficiency were evaluated. Release rates for lysine and BSA into a phosphate buffer, distilled water, and a synthetic ocean solution were observed, and the activity of the entrapped β‐galactosidase was determined. The capture efficiencies for lysine and BSA decreased as the concentration increased. The capture efficiency for lysine ranged from 90% at pH 5 to 20% at pH 8.6. There was no significant effect of the release media on the rate of release. BSA and lysine release reached 90% of the maximum after 100 and 50 min, respectively. The capture efficiency of β‐galactosidase was not affected by the pH of TPP; however, enzyme activity in the beads decreased as the pH increased. Beads prepared in the pH 8.6 TPP solution had significantly higher rates of enzyme release over time. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 405–413, 2002; DOI 10.1002/app.10393  相似文献   

14.
With bovine serum albumin (BSA) as a model drug, drug‐loaded films of chitosan (CS) and poly(vinyl alcohol) (PVA) were obtained by a casting/solvent evaporation method and crosslinked by tripolyphosphate (TPP). The films were characterized by FTIR, XRD, and SEM. The influential factors of drug‐loaded films on drug‐controlled release were studied. These factors included, primarily, the component ratio of CS and PVA, the loaded amount of BSA, the pH and ionic strength of the release solution, and the crosslinking time with TPP. The results showed that within 25 h, when the weight ratios of CS to PVA in the drug‐loaded films were 90 : 10, 70 : 30, 50 : 50, and 30 : 50, the cumulative release rates of BSA were 63.3, 72.9, 81.8, and 91.8%, respectively; when the amounts of model drug were 0.1, 0.2, and 0.3 g, the release rates were 100, 81.8, and 59.6%, respectively; when the pH values of the drug release medium were 1.0, 3.8, 5.4, and 7.4, the release rates reached 100, 100, 37.9, and 7.8%, respectively; the cumulative release rates of BSA were 78.4, 82.3, 84.3, and 91.7% when the ionic strengths of the release solution were, respectively, 0.1, 0.2, 0.3, and 0.4M; when the crosslinking times of these drug films in the TPP solution were 0, 5, 15, 30, and 60 min, the release rates attained 100, 100, 81.8, 65, and 43.3%, respectively. All the results indicated that the CS/PVA film was useful in drug delivery systems. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 808–813, 2005  相似文献   

15.
In this article, we introduce a new method for preparing ultrasmall chitosan (CS)/succinyl β‐cyclodextrin (SCD) nanoparticles (NPs) intended for loading bovine serum albumin (BSA) as a model protein. The proposed method is based on the complex coacervation technique followed by ionotropic gelation with tripolyphosphate. SCD, an anionic derivative of cyclodextrin, was synthesized and used in CS‐based NPs to enhance the entrapment efficiency of BSA. The results show that with this approach, ultrasmall, compact, and neutralized NPs with a mean particle size near 30 nm were obtained. A high degree of protein entrapment in the NPs led to a significant improvement in the BSA release profile with a low initial burst release (ca. 3% w/v of the initially loaded BSA) and a sustained release over time. This enabled a suitable nanocarrier for long‐term protein delivery (30% release over 120 h). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39648.  相似文献   

16.
Chitosan nanoparticles were prepared by ionic cross-linking with tripolyphosphate (TPP). The major effect on encapsulation and release of protein in chitosan-TPP nanoparticles was investigated in order to control the loading and release efficiency. A set of the same molecular weight (MW) proteins with different pI and a set of the same pI proteins with different MW were studied. The influence of protein concentration, pH of solution, and the activity of released protein were examined. It was found that the encapsulation efficiency (EE) of a set of the different MW protein decreased with increasing of MW of protein and protein concentration. The protein with having pI higher than pH of solution was attracted to the positively charged chitosan, resulting in increasing of EE. The release of protein from the nanoparticles showed that the protein release decreased with increasing of chitosan concentration, high MW protein, low pH, and less swelling of the particle. The released protein in chitosan-TPP matrix was still active in the buffer solution.  相似文献   

17.
In this study, carboxymethyl chitosan (CMC) hydrogel beads were prepared by crosslinking with Ca2+. The pH‐sensitive characteristics of the beads were investigated by simulating gastrointestinal pH conditions. As a potential protein drug delivery system, the beads were loaded with a model protein (bovine serum albumin, BSA). To improve the entrapment efficiency of BSA, the beads were further coated with a chitosan/CMC polyelectrolyte complex (PEC) membrane by extruding a CMC/BSA solution into a CaCl2/chitosan gelation medium. Finally, the release studies of BSA‐loaded beads were conducted. We found that, the maximum swelling ratios of the beads at pH 7.4 (17–21) were much higher than those at pH 1.2 (2–2.5). Higher entrapment efficiency (73.2%) was achieved in the chitosan‐coated calcium‐CMC beads, compared with that (44.4%) in the bare calcium‐CMC beads. The PEC membrane limited the BSA release, while the final disintegration of beads at pH 7.4 still leaded to a full BSA release. Therefore, the chitosan‐coated calcium‐CMC hydrogel beads with higher entrapment efficiency and proper protein release properties were a promising protein drug carrier for the site‐specific release in the intestine. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3164–3168, 2007  相似文献   

18.
Chitosangel beads were prepared using an in‐liquid curing method by ionotropic crosslinking or interpolymer linkage with tripolyphosphate (TPP) or polyphosphate (PP). The ionic interaction of chitosan with TPP or PP is pH‐dependent due to the transition of “ladder‐loop” complex structures. Chitosan gel beads cured in a pH value lower than 6 of a TPP solution was a controlled homogeneous ionic‐crosslinking reaction, whereas chitosan gel beads cured in a lower pH PP solution was a nonhomogeneous interpolymer complex reaction due to the mass‐transfer resistance for the diffusion of macromolecular PP. According to the results of FTIR and EDS studies, it was suggested that significantly increasing the ionic‐crosslinking density or interpolymer linkage of a chitosan–TPP or chitosan–PP complex could be achieved by transferring the pH value of curing agent, TPP or PP, from basic to acidic. The swelling behavior of various chitosan beads in acid medium appeared to depend on the ionic‐crosslinking density or interpolymer linkage of the chitosan–TPP or chitosan–PP complex, which were deeply affected by the in‐liquid curing mechanism of the chitosan gel beads. By the transition of the in‐liquid curing mechanism, the swelling degree of chitosan–TPP or chitosan–PP beads was depressed and the disintegration of chitosan–TPP or chitosan–PP beads did not occur in strong acid. The drug‐release patterns of the modified chitosan gel beads in simulated intestinal and gastric juices were sustained for 20 h. These results indicate that the sustained release of anticancer drugs could be achieved due to the variation of the reaction mechanism of a chitosan–polyelectrolyte pH‐dependent ionic interaction. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1093–1107, 1999  相似文献   

19.
以具有升温自固化特性的壳聚糖季铵盐/甘油磷酸钠混合溶液为水相,利用快速膜乳化与热固化法制备了粒径均一、pH敏感的壳聚糖季铵盐凝胶微球,考察了跨膜压力、水油相组成、水油相体积比及微孔膜孔径等对微球粒径、结构和药物包埋率的影响. 结果表明,得到粒径698±57.33, 1145±71.48, 2021±53.63及3984±191.72 nm、粒径分布窄(多分散系数<0.1)、药物包埋率高达75.49%±2.62%的凝胶微球. 所制微球生物相容性好,有明显的pH敏感性,中性和碱性环境下结构稳定,药物缓释,pH=7.4时24 h内药物累计释放率为34.6%;酸性环境下微球崩解,药物快速释放,pH=5.5时1 h内药物累计释放率高达79.6%.  相似文献   

20.
In this study, we investigated the effects of the degree of deacetylation (DD) of chitosan on the resulting nanoparticles' properties. The diameters of the nanoparticles increased as the DD of chitosan decreased. In addition, we prepared fluorouracil-loaded chitosan nanoparticles and characterized them using FTIR and NMR spectroscopy. The encapsulation efficiency increased with the DD of chitosan. Particles produced using 90%-DD chitosan had a mean particle size of 113 nm and a 56.5% drug loading. The stable nanoparticles formed through the complexation of chitosan with TPP have the potential for use in drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号