首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new systematic method for designing square‐root domain (SRD) linear transformation (LT) filter is introduced in this paper. For this purpose, a substitution table containing the SRD LT equivalent of each passive element has been introduced. The proposed equivalents have been realized by employing appropriate SRD building blocks with low‐voltage operation capability. As a design example, a 3rd‐order SRD LT filter has been realized and its performance has been evaluated through simulation results. In addition, the most important performance factors of the SRD filter have been compared with those achieved by the SRD filters derived according to the leapfrog, wave, and topological emulation methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A novel technique for designing square‐root domain (SRD) filters is introduced in this paper. The concept of the proposed method is based on the substitution of the passive elements of the corresponding prototype filter by their SRD equivalents. The signal processing performed by the proposed SRD equivalents achieves that the voltage at each terminal of the SRD equivalent is the compressed version of the voltage at the corresponding terminal of the passive element, and that the current that flows through the SRD equivalent is the same as that flows through the passive element. The main attractive characteristic of the proposed method is that a quick procedure for designing SRD filters is offered. The validity of the proposed technique was verified by studying the behaviour of a 5th‐order SRD low‐pass filter. In order to demonstrate the benefits offered by the proposed technique, a SRD leapfrog filter was also designed and its performance is compared with that of the active filter that topologically simulates the same prototype filter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
High‐order log‐domain filters could be designed by transposing the already known linear‐domain GmC filter topologies to the corresponding topologies in the log‐domain. This is achieved by using a non‐linear transconductor configuration, where the output current is exponentially related to its input and output voltages. A drawback of the non‐linear transconductor configuration already introduced in the literature is that a number of the transposed log‐domain filter topologies suffer from DC instability, while in some others a DC offset current appears at their output. In order to eliminate the aforementioned problems a modified non‐linear transconductor configuration for transposing GmC filter topologies to log‐domain filter topologies is introduced in this paper. The achieved improvements are demonstrated through a number of log‐domain filter configurations derived using the already introduced and the proposed transposition schemes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A method for designing high‐order log‐domain filters has already been proposed in the literature based on the concept of the classical linear transformation (LT) filters. For this purpose, a substitution table containing the log‐domain LT equivalent of each passive element has been introduced. Drawbacks of the log‐domain filter topologies derived according to this table are the following: (a) a dc offset current appears at the output of all pole filters and (b) dc instability is observed in the case of the substitution of LC resonators. In addition, an alternative technique already proposed for simulating filters with LC resonators is valid only under small‐signal conditions. In order to overcome the aforementioned problems, new log‐domain LT equivalents of a number of passive elements are introduced in this paper. The correct operation of the novel blocks has been verified through simulation results. Also, a comparison concerning the behaviour of the log‐domain LT filters and that of the filters derived according to the leapfrog and the wave methods has also been performed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Square‐root domain universal biquad topologies are introduced in this paper. One of them is single input multiple output, while the other one is multiple input single output biquad. Important benefits offered by the proposed topologies are the electronic adjustment of the resonant frequency and the capability for operating in a low‐voltage environment; also, the resonant frequency could be adjusted without disturbing the Q factor and vice‐versa. Simulation results using the Spectre simulator of the Analog Design Environment of Cadence software validate the correct operation of the proposed topologies and provide important performance characteristics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
High‐order log‐domain filters could be easily designed by using the functional block diagram (FBD) representation of the corresponding linear prototype and a set of complementary operators. For this purpose, lossy and lossless integrator blocks have been already introduced in the literature. Novel first‐order log‐domain highpass and allpass filter configurations, which are fully compatible with the already published integrator blocks, are introduced in this paper. These are realized using integration and subtraction blocks or a novel differentiation configuration. As a result, a complete set of first‐order building blocks would be available for synthesizing any arbitrary high‐order transfer function. In order to verify the correct operation of the proposed structures, the performance of the introduced highpass filters was evaluated through simulation results. In addition, a fifth‐order log‐domain bandpass filter was designed and simulated using one of the introduced first‐order highpass filter configurations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
A technique is proposed for obtaining current‐mode filters based on current mirror arrays that operate as unity gain current amplifiers. These amplifiers by properly driving capacitors realize active lossless integrators which are the basic active elements for the derivation of filters according to the leapfrog method. Due to the fact that both the structure of the amplifiers and the adapted method for filter design are simple, the proposed technique is attractive for filter design and implementation. A design and the implementation of two third‐order low‐pass filters are presented. The array of the amplifiers has been implemented in a 0.8 µm CMOS technology. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
A new configurable analogue block (CAB), the key element in the design of field programmable analogue arrays (FPAAs), is introduced in this paper. This CAB is based on wave equivalents of the passive elements and it is easily reconfigurable resulting in very simple and versatile FPAA structures. The proposed topology employs a minimum number of switches in the signal path due to the absence of the interconnection network required in other FPAA structures, and thus an improved performance is achieved in comparison with the already introduced corresponding programmable configurations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the design of log‐domain filters with uncommon transfer functions is considered, using the wave log‐domain design method. To this end, the concept of log‐domain wave equivalent of a lattice section is introduced, as a new building block, in order to enable the design of filters with transfer functions dealing with amplitude and phase response at the same time. This building block is very useful when the phase and the group delay response of the filter is significant. The functionality of this design approach is verified through a design example and simulation results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Novel topologies of fractional‐order generalized filters are introduced in this paper. These offer the following benefits: (1) realization of lowpass, highpass, bandpass, allpass, or bandstop filter functions by the same topology; (2) resistorless realizations; (3) electronic adjustment of their frequency characteristics as well as their order; and (4) employment of only grounded capacitors. All the above have been achieved using Operational Transconductance Amplifiers as active elements and appropriate multi‐feedback topologies. The behavior of the proposed designs is verified through simulation results using the Cadence IC design suite and the Design Kit provided by the Austrian Micro Systems 0.35‐µm complementary metal–oxide–semiconductor process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The design of high‐order log‐domain filters can be easily accomplished by transposing already known linear‐domain Gm‐C filter topologies to their counterparts in the log‐domain through the employment of a set of complementary operators. To achieve the Gm‐C filter topologies, the multiple feedback approach is widely used due to its accrued advantages. In this paper a synthesis approach for the development of an nth‐order multifunction log‐domain filter comprising lowpass (LP), highpass (HP) and bandpass (BP) filter functions is proposed. The approach is based on the decomposition of nth‐order HP filter function to follow‐the‐leader‐feedback (FLF) topology. The design is simple and simultaneously achieves nearly all of the chief advantages. The design offers superior performance factors vis‐à‐vis the ones recently reported. To verify the high‐order behavior of the topology, a 5th‐order multifunction filter was designed and the achieved simulated results verify the theory. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The leap‐frog (LF) configuration is an important structure in analogue filter design. Voltage‐mode LF OTA‐C filters have recently been studied in the literature; however, general explicit formulas do not exist for current‐mode LF OTA‐C filters and there is also need for current‐mode LF‐based OTA‐C structures for realization of arbitrary transmission zeros. Three current‐mode OTA‐C structures are presented, including the basic LF structure and LF filters with an input distributor or an output summer. They can realize all‐pole characteristics and functions with arbitrary transmission zeros. Explicit design formulas are derived directly from these structures for the synthesis of, respectively, all‐pole and arbitrary zero filter characteristics of up to the sixth order. The filter structures are regular and the design formulas are straightforward to use. As an illustrative example, a 300 MHz seventh‐order linear phase low‐pass filter with zeros is presented. The filter is implemented using a fully differential linear operational transconductance amplifier (OTA) based on a source degeneration topology. Simulations in a standard TSMC 0.18µm CMOS process with 2.5 V power supply have shown that the cutoff frequency of the filter ranges from 260 to 320 MHz, group delay ripple is about 4.5% over the whole tuning range, noise of the filter is 420nA/√Hz, dynamic range is 66 dB and power consumption is 200 mW. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The recently proposed oscillation‐based test structures of active RC filters assume ideal opamps and test switches. In this letter, feasibility case study of the oscillation‐based test structure of the resonant bandpass filter is presented in which non‐ideal characteristics of the employed opamps and MOS switches are considered. Based on the dominant pole model for the opamps, we derive expression for the minimum value of the resistance required to put the filter stage into oscillation and expression for the frequency of the undamped pole. Derived expressions describe the conditions for the implementation of the oscillation‐based test in practice. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Novel configurations of fractional‐order filter topologies, realized through the employment of the concept of companding filtering, are introduced in this paper. As a first step, the design procedure is presented in a systematic algorithmic way, while in the next step, the basic building blocks of sinh‐domain and log‐domain integrators are presented. Because of the employment of metal–oxide–semiconductor (MOS) transistors operated in the subthreshold region, the derived filter structures offer the capability for operation in an ultra‐low‐voltage environment. In addition, because of the offered resistorless realizations, the proposed topologies are reconfigurable, in the sense that the order of the filter could be chosen through appropriate bias current sources. The performance of the derived fractional‐order filters has been evaluated through simulation and comparison results using the Analog Design Environment of the Cadence software and MOS transistor parameters provided by the Taiwan Semiconductor Manufacturing Company (TSMC) 180‐nm complementary MOS (CMOS) process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents an automated synthesis procedure for integrated continuous‐time fully‐differential Gm?C filters. Such procedure builds up on a general extended state‐space system representation which provides simple matrix algebra mechanisms to evaluate the noise and distortion performances of filters, as well as, the effect of amplitude and impedance scaling operations. The proposed technique not only addresses the dynamic range optimization under power dissipation constraints, but also accounts for other relevant integrated circuit related features, such as transconductor decomposition in unitary instances, spread of capacitances and estimated area occupation, among other characteristics. The proposed approach, implemented in the MATLAB® framework, can be also used as an exploratory tool to compare different circuit implementations for a given set of filter specifications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A novel Gm‐C filter design technique is presented. It is based on floating‐gate metal oxide semiconductor (FGMOS) transistors and consists in a topological rearrangement of conventional fully differential Gm‐C structures without modifying the employed transconductors at transistor level. The proposed method allows decreasing the number of active elements (transconductors) of the filter. Moreover, high linearity is obtained at low and medium frequencies of the pass band. Drawbacks inherent to the use of FGMOS transistors are analyzed, such as large occupied area, high sensitivity to mismatch, or parasitic zeros in transfer functions. The features of the proposed technique are fully exploited in all‐pole Gm‐C filter design, specially implementing unity gain Butterworth transfer functions. Thus, two low‐power second‐order Butterworth Gm‐C filters have been designed and fabricated to compare the proposed FGMOS technique with their equivalent topologies obtained by a conventional design method. Measurement results for a test chip prototype in a 0.5‐µm standard complementary MOS process are presented, confirming the advantages of the proposed FGMOS design technique. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A new state space Class AB synthesis method for the design of square‐root domain filter based on the MOSFET square law is proposed in this study. Those circuits designed by the proposed Class AB systematic synthesis method have the advantages of Class AB circuit structure and translinear circuits. Two alternative design procedures were suggested for designing new circuits. Proposed synthesis technique is applied for designing of a first order all‐pass filter and a third order low‐pass filter. Circuits are simulated in PSpice using 0.35 µm CMOS technology parameters. Time domain and frequency domain analysis of the proposed filters are performed, and simulation results of those are also presented. The simulation results show that the proposed synthesis technique is appropriate for the design of different types of filters and has the advantages of Class AB circuit structure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A first‐order Sinh‐Domain allpass filter topology is introduced in this paper. It is constructed from a class‐AB current mirror and appropriately configured non‐linear transconductor cells. Due to the inherent class‐AB nature of Sinh‐Domain filters, the proposed topology offers the capability for handling currents at levels greater than that of the dc bias current level. Also, it offers the well‐known features of companding filters such as electronic adjustment of its frequency characteristics and the capability for operation in a low‐voltage environment. In addition, a four‐phase sinusoidal oscillator design example has been provided. The behaviour of the proposed topology has been evaluated and compared with other already known configurations, where the most important performance factors have been considered. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Fractional‐order blocks, including differentiators, lossy and lossless integrators as well as filters of order 1 + a (0 < a < 1), are presented in this paper. The proposed topologies offer the benefit of ultra low‐voltage operation; in addition, reduced circuit complexity is achieved compared to the corresponding companding schemes, which have been already introduced in the literature. The ultra‐low voltage operation is performed through the employment of metal oxide semiconductor transistors biased in the subthreshold region. The reduction of circuit complexity is achieved through the utilization of current mirrors as active elements for realizing the required building blocks. The performance of the proposed fractional‐order circuits has been evaluated through the Analog Design Environment of the Cadence software and the design kit provided by the Taiwan Semiconductor Manufacturing Company (TSMC) 180 nm complementary metal oxide semiconductor process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, third‐order current‐mode MOSFET‐C filters that use operational transresistance amplifiers (OTRAs) with little parasitic capacitance effects are presented. On the basis of the proposed systematic method and design procedure, we can efficiently synthesize third‐order active filters with OTRAs along with simplified MOSFET resistor circuits, and all virtually grounded capacitors. Third‐order current‐mode Chebychev low‐pass and high‐pass filters are realized to verify the validity of the theoretical analysis. Experimental results employing commercially available current feedback amplifiers are also given. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号