共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the chemically induced graft copolymerizations of acrylic acid (AA), acrylamide, crotonic acid, and itaconic acid (IA) onto cotton fibers. Benzoyl peroxide was used as an initiator. The effects of grafting temperature, grafting time, and monomer and initiator concentrations on the grafting yields were studied, and optimum grafting conditions were determined for the sample material. The maximum grafting yield value obtained was 23.8% for AA. Swelling tests, Fourier transform infrared spectroscopy, and scanning electron microscopy analyses of grafted and ungrafted fibers were also performed to characterize fiber properties. IA‐grafted fibers were measured as the most swollen fibers, with a swelling value of 510%. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2343–2347, 2006 相似文献
2.
Changhua Liu Xun Dai Jianguang Chen Yanqing Chen Xiaoli Guo Yuming Huang 《应用聚合物科学杂志》2009,113(4):2339-2345
The grafting of 4‐vinyl pyridine (4‐VP) onto konjac glucomannan (KGM) by ammonium persulfate (APS) as the initiator was studied in an acid aqueous solution under an inert atmosphere. The grafting ratio (G%) and grafting efficiency (E%) were evaluated comparatively. The dependence of these parameters on the initiator concentration, sulfuric acid concentration, ratio of monomer to KGM, temperature, and reaction time was also investigated. Under conditions of [KGM] = 1.00 g/L, [APS] = 1.00 × 10?2 mol/L, [4‐VP] = 9.32 × 10?2 mol/L, [H+] = 5.00 × 10?2 mol/L, temperature = 35°C, and time = 120 min, the optimum G% and E% were 307.27 and 52.75%, respectively. The proof of grafting was obtained from thermogravimetric analysis and infrared spectra. Preliminary research of the graft's adsorption capacity for heavy‐metal ions [Cr(VI), Cu(II), Pb(II), and Cd(II)] was done. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
3.
The graft copolymerization of methyl acrylate onto poly(vinyl alcohol) (PVA) with a potassium diperiodatonickelate(IV) [Ni(IV)]–PVA redox system as an initiator was investigated in an alkaline medium. The grafting parameters were determined as functions of the temperature and the concentrations of the monomer and initiator. The structures of the graft copolymers were confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. The Ni(IV)–PVA system was found to be an efficient redox initiator for this graft copolymerization. A single‐electron‐transfer mechanism was proposed for the formation of radicals and the initiation. Other acrylate monomers, such as methyl methacrylate, ethyl acrylate, n‐butyl acrylate, and n‐butyl methacrylate, were used as reductants for graft copolymerization. These reactions definitely occurred to some degree. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 529–534, 2003 相似文献
4.
The feasibility of chromium(VI) to induce graft polymerization of methyl methacrylate onto silk was investigated. The rate of grafting was determined by varying monomer concentration, chromium(VI) concentration, temperature, acidity of the medium, nature of the silk, reaction medium, and redox system. The graft yield increased with increasing monomer concentration up to 0.65M, and with further increase of monomer the graft yield decreased. The graft yield increased with increasing chromium(VI) concentration. The grafting is considerably influenced by chemical modification of silk prior to grafting. The graft yield is influenced by thiourea concentration, decreasing with increasing thiourea concentration. The effect of certain inorganic salts and anionic surfactants on the rate of grafting was investigated. 相似文献
5.
The graft copolymerization of glycidylmethacrylate (GMA) onto modified nylon‐6 fibers containing polydiallyldimethylammonium chloride (PDADMAC) groups in the presence of (Cu 2+–K2S2O8) as a redox initiating system was carried out, with very high extent and almost without homopolymer formation. The mechanism of the graft polymerization induced by this system was suggested. The rate of grafting was determined by varying the monomer, K2S2O8, and cupric ion concentrations as well as the amount of PDADMAC. The kinetic investigation revealed that the rate of grafting (Rp) of GMA onto modified nylon‐6 fibers is proportional to [GMA]1.83, [CuSO4·5H2O]0.46, [PDADMAC]0.4, and [K2S2O8]1.43. The overall activation energy was 134.7 kJ/mol. The fine structure and thermal properties of the grafted nylon‐6 fibers were investigated. investigated. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 613–618, 2006 相似文献
6.
The use of a bromate-thiourea redox system to initiate graft copolymerization of methyl methacrylate onto silk has been investigated. The rate of grafting has been determined by varying the concentration of bromate ion, monomer, thiourea, the temperature and the solvent. The graft yield increases with increasing the bromate ion concentration up to 20 mmo1/1. With further increase of oxidant the graft yield decreases. The percentage of grafting increases with increase of hydrochloric acid up to 40 mmo1/1. Thereafter it decreases. The effect of increasing thiourea concentration up to 15 mmo1/1. is to bring about an increase in the graft yield. Above this concentration grafting decreases sharply. The rate of grafting increases with increase of temperature. The use of various water soluble solvents effects the percentage of grafting considerably. The alkali solubility of the grafted fiber has been investigated. 相似文献
7.
Rajani K. Samal C. N. Nanda S. C. Satrusallya B. L. Nayak G. V. Suryanarayan 《应用聚合物科学杂志》1983,28(4):1311-1319
Graft copolymerization of acrylamide (AM) onto silk fibers, using Mn(III)–sulphate as initiator, has been investigated, in aqueous sulphuric acid in the temperature range of 30–55°C. Grafting reaction has been studied by varying the concentration of monomer, Mn(III), sulphuric acid, temperature, and also with the modified silk. The graft yield increases significantly with increase of monomer concentrations to the extent of 0.85M, after which the rate falls. With increase in Mn(III) concentration and H+ ion concentration the graft yield increases, but after an optimum concentration a depression in the graft yield is noticed. The rate of the reaction is temperature-dependent; with increase of temperature the graft-on increases. Among the solvent composition studied a solvent/water mixture containing 10% of the solvent seems to constitute the most favorable medium for grafting, and a further increase of solvent composition decreases the graft yield. The effect of various additives such as transition metal salts, aromatic and heterocyclic amines on grafting reaction has been studied. A suitable mechanism for grafting has been proposed. Finally physical characterization such as thermal analysis (TGA) of the grafted samples has been carried out in order to ensure grafting and to study the change in the properties of the fibers. 相似文献
8.
Graft copolymerization of methyl methacrylate onto silk was investigated in aqueous solution using potassium peroxydiphosphate as initiator. The rate of grafting was determined by varying monomer, peroxydiphosphate ion, temperature, and solvent. The graft yield increased with increasing peroxydiphosphate ion upto 8 × 10?3 mol/1 and with further increase of peroxydiphosphate ion the graft yield decreased. The graft yield increased with increasing monomer concentration upto 9 wt.-% and with further increase of monomer the graft yield decreased. The rate of grafting increased with the increase of temperature. The effect of acid and water soluble solvents and salts on graft yield was investigated and a suitable rate expression was derived. 相似文献
9.
The use of tetravalent ceric ions to initiate graft-copolymerization of methyl methacrylate onto silk has been investigated. The rate of grafting has been determined by varying monomer, cerium (IV), temperature, and nature of silk. The graft yield increases with increasing monomer concentration up to 0.65 mol/l and with further increase of monomer, the graft yield decreases. The percentage of grafting increases with increasing ceric ion concentration up to 0.03 mol/l and thereafter it decreases. The rate of reaction is temperature dependent, with increasing temperature, the graft yield increases. The grafting is considerably influenced by chemical modification prior to grafting. The effect of different species of ceric ion and CuSO4 on the rate of grafting has also been investigated. 相似文献
10.
The graft copolymerization of methyl methacrylate onto Mulberry silk fibers was studied in aqueous solution using Mn(acac)3 as initiator. Perchloric acid was found to catalyze the reaction. The rate of grafting was investigated by varying the concentration of the monomer and the complex, acidity of the medium, the solvent composition of the reaction medium, the surfactants, and the inhibitors. The graft yield increases with increasing concentration of Mn(acac)3 up to 0.01 mol/L, decreasing thereafter. Increase of MMA concentration up to 0.56 mol/L increases graft yield, and thereafter it decreases. Among the various vinyl monomers studied, MMA was found to be most suitable for grafting. Grafting increases up to 7.5 × 10?3 mol/L of HClO4 concentration, and thereafter it decreases. A suitable reaction scheme has been proposed and a rate equation has been derived. The energy of activation has been calculated from the Arrhenius plot. The chain transfer constants for various chain transfer solvents have been evaluated from the average molecular weight (M?) of grafted poly(methyl methacrylate). 相似文献
11.
Yinghai Liu Xiaohui Liu Yuanwei Liu Jinsong Zhang Kuilin Deng Zhanjun Liu 《Polymer International》2004,53(11):1611-1616
The graft copolymerization of methyl acrylate onto poly(vinyl alcohol) (PVA) using potassium diperiodatoargentate(III) [Ag(III)]–PVA redox system as initiator was studied in an alkaline medium. Some structural features and properties of the graft copolymer were confirmed by Fourier‐transfer infrared spectroscopy, scanning electron microscope, X‐ray diffraction and thermogravimetric analysis. The grafting parameters were determined as a function of concentrations of monomer, initiator, macromolecular backbone (X?n = 1750, M? = 80 000 g mol?1), reaction temperature and reaction time. A mechanism based on two single‐electron transfer steps is proposed to explain the formation of radicals and the initiation profile. Other acrylate monomers, such as methyl methacrylate, ethyl acrylate and n‐butyl acrylate, were also used to produce graft copolymerizations. It has been confirmed that grafting occurred to some degree. Thermogravimetric analysis was performed in a study of the moisture resistance of the graft copolymer. Copyright © 2004 Society of Chemical Industry 相似文献
12.
The graft copolymerization of methyl methacrylate onto silk fibers initiated by a hydrogen peroxide–thiourea redox system was investigated under various conditions. The effects of monomer, initiator, temperature, acidity of the medium, and solvent on the rate of grafting were studied. The graft yield increases with the increase of monomer and initiator concentration. The graft yield also increases with the increase of acid concentration upto 22.50 × 10?2M and thereafter it decreases. The effect of some inorganic salts on the rate of grafting has also been investigated, and a suitable mechanism has been suggested. 相似文献
13.
14.
Poly(acrylic acid) was grafted onto methylcellulose in aqueous media by a potassium permanganate‐p‐xylene redox pair. Within the concentration range from 0.93 × 10?3 to 9.33 × 10?3M, p‐xylene, the graft copolymerization reaction exhibited minimum and maximum graft yields and was associated with two precursor‐initiating species, a p‐xylyl radical and its diradical derivative. The efficiency of the graft was low, not higher than 12.9% at a p‐xylene concentration of 0.93 × 10?3M and suggested the dominance of a competitive homopolymerization reaction under homogeneous conditions. The effect of permanganate on the graft yield was normal and optimal at 135% graft yield, corresponding to a concentration of the latter of 33.3 × 10?3M over the range from 8.3 × 10?3 to 66.7 × 10?3M. The conversion in graft yield showed a negative dependence on temperature in the range 30–60°C and suggested a preponderance of high activation energy transfer reaction processes. The calculated composite activation energy for the graft copolymerization was 7.6 kcal/mol. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 278–281, 2004 相似文献
15.
The grafting of methacrylic acid (MAA) and other vinyl monomers onto cotton cellulose in fabric form was investigated in an aqueous medium with a potassium peroxydiphosphate–metal ion–cellulose thiocarbonate redox initiation system. The graft copolymerization reaction was influenced by peroxydiphosphate (PP) concentration, the pH of the reaction medium, monomer concentration, the duration and temperature of polymerization, the nature of vinyl monomers, and the nature and concentration of metallic ions (activators). On the basis of a detailed investigation of these factors, the optimal conditions for the grafting of MAA onto cotton fabric with the said redox system were as follows: [Fe2+] = 0.1 mmol/L, [PP] = 2 mmol/L, [MAA] = 4%, pH‐2, grafting time = 2 h, grafting temperature = 70°C, and material/liquor ratio = 1 : 50. Under these optimal conditions, the graft yields of different monomers were in the following sequence: MAA ? acrylonitrile > acrylic acid > methyl acrylate > methyl methacrylate. The unmodified cellulosic fabric (the control) had no ability to be grafted with MAA with the PP–Fe2+ redox system. The percentage of grafting onto the thiocarbonated cellulosic fabric was more greatly enhanced in the presence of iron salts than in their absence. This held true when the lowest concentrations of these salts were used separately. A suitable mechanism for the grafting processes is suggested, in accordance with the experimental results. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1879–1889, 2003 相似文献
16.
The graft copolymerization of methyl methacrylate onto silk fibers was investigated in aqueous solution using the Mn(IV)–oxalic acid redox system. The copolymerization reaction was carried out under a variety of conditions such as different monomer, initiator, oxalic acid, acid concentrations, and temperatures. The graft yield increases with increasing initiator concentration up to 5 × 10?2M, and with further increase of the initiator concentration it decreases. The graft yield also increases with increasing sulfuric acid concentration up to 15 × 10?2M, and decreases thereafter. The rate of grafting also increases with increase in oxalic acid concentration up to 1.5 × 10?2M and 84.592 × 10?2M, respectively, and thereafter the rate of grafting shows down. The effect of temperature, solvents, and salts on graft yield has also been investigated and a plausible rate expression has been derived. 相似文献
17.
18.
A novel redox system, potassium diperiodatonickelate (Ni(IV))‐casein is used to initiate graft copolymerization of Styrene onto casein under different conditions in aqueous alkaline solution. Graft copolymers with both high grafting efficiency (>98%) and percentage of grafting(>300%) are obtained, which indicated that (Ni(IV))‐casein redox pair is an efficient initiator for this grafting. The effects of reaction parameters, such as monomer‐to‐casein weight ratio, initiator concentration, pH, time, and temperature, are investigated. A tentative initiation mechanism is proposed. The structures and properties of the graft copolymer are characterized by Fourier transform infrared Spectroscopy, X‐ray diffraction diagrams, and Scanning Electron Microscope. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4247–4251, 2006 相似文献
19.
The graft copolymerization of methyl methacrylate onto silk initiated by thallium (III) perchlorate was investigated in aqueous medium. The rate of grafting was evaluated varying the concentration of monomer, initiator, and acid, and the temperature. The graft yield was found to increase with increasing the monomer and initiator concentrations. The graft yield was found to decrease with increasing the acid concentration. The effect of inhibitors and various solvents on the graft yield was studied. From the Arrhenius plot the overall activation energy was found to be 4.2 kcal/mol. A suitable kinetic scheme has been proposed, and a rate equation has been derived. 相似文献
20.
A novel redox system, tert‐butyl hydroperoxide (TBHP)–silk sericin (SS), was used to initiate the graft copolymerization of methyl acrylate (MA) onto silk sericin in an aqueous medium. The graft copolymer, consisting of nanoparticles with a fine core–shell structure, was characterized using Fourier transfer infrared spectroscopy. The effects of the concentrations of MA and TBHP, reaction temperature and time on the grafting parameters of the copolymerization were studied in detail. In terms of grafting percentage and grafting efficiency, the optimum reaction conditions were obtained as follows: [MA] = 0.465 mol L?1, [TBHP] = 3.884 × 10?4 mol L?1, T = 80 °C, t = 150 min. Transmission electron microscopy images of the particles showed a core–shell morphology, where poly(methyl acrylate) cores were covered with SS shells. A possible initiation mechanism is proposed. Copyright © 2006 Society of Chemical Industry 相似文献