首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PTT非等温结晶动力学研究   总被引:5,自引:0,他引:5  
采用差示扫描量热仪对PTT进行非等温结晶研究。利用不同动力学模型对其结晶过程进行处理, 并将PTT与PET及PBT的非等温结晶过程进行对比。结果表明:Jeziorny方程和Ozawa方程都可以很好的 描述PTT,PET,PBT的非等温结晶过程;采用结合Avrami方程和Ozawa方程的处理方法,得到了3种聚酯的 结晶速率的大小关系:PBT>PTT>PET。通过计算Ziabicki结晶能力参数,得到3种聚酯的结晶能力的顺序 为:PBT>PTT>PET。  相似文献   

2.
采用XP-201热台偏光显微镜研究了对苯二甲酸乙二醇酯(PET)/对苯二甲酸丙二醇酯(PTT)合金等温结晶时的结晶形态及影响因素。研究结果表明:随着等温结晶温度的升高,PET/PTT(40/60)合金的结晶诱导期变长;在观察的时间范围内各样品的球晶尺寸随着时间的延长而增大;随着PTT含量的增加,样品球晶的线生长速率增大,球晶尺寸增大;对比不同温度下等温结晶的球晶形态,PET/PTT(100/0)样品在190℃结晶时球晶尺寸最大, PET/PTT(40/60)样品和PET/PTT(100/0)样品在180℃结晶时球晶尺寸最大; PET/PTT(0/100)样品等温结晶时呈现出了复杂的条带球晶。  相似文献   

3.
To improve the thermal aging flexibility of poly(butylene terephthalate) (PBT), PBT was melt‐blended with three type thermoplastic elastomer [poly ether‐ester type (TPE1), polyester‐ester type (TPE2), and poly(buthylene 2,6‐naphthalate)/poly(tetramethylene glycol) block copolymer type (TPE3)], PBT/poly(ethylene terephthalate), (PET) alloy (Alloy), and phosphate type antioxidant (T1). The content of the three type TPEs and Alloy was fixed at 20 parts per 100 g of PBT. The morphology and thermal behavior of these blends have been investigated with scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetry (TG). In the case of PBT/Alloy‐20 and PBT/TPE3–20 blends show clean fractured surface, whereas for PBT/TPE1–20 and PBT/TPE2–20 blends, the elongated pieces or fiber can be seen abundantly which indicates a good compatibility. TG traces show a significant shift of the weight loss toward higher temperature for PBT/Alloy‐20, whereas PBT/TPE1–20, PBT/TPE2–20 and PBT/TPE3–20 blend decrease in thermal stability than PBT. To investigate the applicability for insulation material, the prepared blend samples were extruded an electric wire and flexibility and electric breakdown voltage (BDV) of wire after thermal aging were studied. For PBT/TPE1–20 and PBT/TPE2–20 blends did not show any cracks after flexibility test at 130°C for 6 h and 225°C for 30 min. In contrast PBT, PBT/Alloy‐20, PBT/TPE3–20, and PBT/T1–1 showed a partial crack in the insulation after flexibility test at 130°C for 6 h although its good flexibility at 225°C for 30 min. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
采用差示扫描量热仪对熔融共混制备的聚对苯二甲酸乙二醇酯(PET)/聚对苯二甲酸丙二醇酯(PTT)合金的非等温结晶行为进行研究。结果表明,在相同的降温速率时, 随着PTT含量的增加,PET/PTT合金结晶峰温度向低温方向移动,而且当合金中PET与PTT含量接近时,合金样品出现了双重结晶峰;在降温结晶的过程中,随着降温速率的增大,各合金样品结晶峰温度均降低,其结晶峰均宽化;采用Jeziorny法对上述非等温结晶过程进行了分析,分析结果表明,随着降温速率的增大,各合金样品非等温结晶速率常数增加,其Avrami指数在1~5之间,并且逐渐减小。  相似文献   

5.
PTT/PET共混体系结晶行为和形态研究   总被引:3,自引:1,他引:3  
利用差示扫描量热仪、正交偏光显微镜研究了聚对苯二甲酸丙二醇酯(PTT)、聚对苯二甲酸乙二醇酯(PET)及PTT/PET共混体系(质量比为25∶75)的结晶行为、形态和等温结晶动力学。结果表明,PTT/PET共混物中,少量的PTT部分地起到了成核作用,但在一定程度上阻碍了PET链段规则地进入晶格,影响了结晶速率。偏光显微镜观察到PET、PTT和PTT/PET共混物在120℃下1、20min的溶液滴膜有较清晰的球晶。  相似文献   

6.
综述了PET/PTT共混体系的国内外发展现状,重点对共混体系的相容性,共混体系的结构形态,熔融结晶行为和结晶动力学和结晶熔融行为进行了论述,并对其发展前景进行了展望。  相似文献   

7.
PET与PTT共聚酯的合成及其性能研究   总被引:1,自引:0,他引:1  
采用直接酯化法合成了不同比例的PET与PTT共聚酯,研究了所得共聚酯的热性能、力学性能及染色性等与不同组成比之间关系。  相似文献   

8.
PET/PTT共混体系在无定形区的相容性   总被引:1,自引:0,他引:1  
梁浩  吴唯  钱琦  刘敏 《中国塑料》2006,20(1):31-35
计算了不同温度下PET/PTT、共混体系的混合自由能,预测了其在热力学上的相容性。通过对不同组分共混物DSC图谱的分析和对玻璃化转变温度的Fox方程及Gordon-Taylor方程的拟合以及冷结晶峰温随组分的变化,表明其为在无定形区相容的体系。针对组成接近的共混体系的玻璃化转变温度范围变宽的现象,使用扫描电镜观察共混物,未发现相分离现象,从而提供了PET/PTT体系相容性在形态方面的证据。  相似文献   

9.
The crystal morphology and nonisothermal crystallization kinetics of short carbon fiber/poly(trimethylene terephthalate) (SCF/PTT) composites were investigated by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). The optical micrographs suggest that the more content of SCF in composites, the smaller size of the spherulites is. Moreover, the addition of SCF can lead to forming banded spherulites in composites. The Avrami equation modified by Jeziorny, Ozawa theory and the method developed by Mo were used, respectively, to fit the primary stage of nonisothermal crystallization of various composites. The results suggest that the SCF served as nucleation agent, accelerates the crystallization rate of the composites, and the more content of SCF, the faster crystallization rate is. Effective activation energy calculated by the differential iso‐conversional method developed by Friedman also concludes that the composite with more SCF component has higher crystallization ability than that with less SCF content. The kinetic parameters U* and Kg are determined, respectively, by the Hoffman–Lauritzen theory. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

10.
采用差示扫描量热法(DSC)研究了聚对苯二甲酸丁二酯(PBT)/聚对苯二甲酸丙二酯(PTT)合金的非等温结晶动力学.随着降温速率的增大,PBT/PTT合金的结晶峰温均降低,结晶峰均加宽.采用Jeziorny法、莫志深法和Flyn-Wall-Ozawa法分析非等温结晶过程,Jeziorny法能够描述PBT/PTT合金的初期结晶过程,对后期结晶存在一定偏差,各PBT/PTT合金的结晶维数变化不大;莫志深和Flyn-Wall-Ozawa法能很好地描述PBT/PTT合金的非等温结晶过程,随PTT含量增加,由Flyn-Wall-Ozawa法求得PBT/PTT合金的活化能呈增加趋势.相对结晶度为0.5,m(PBT)/m(PTT)分别为90∶10,70∶30,50∶50时,PBT/PTT合金的活化能分别为-201.9,-116,0,-66.6 kJ/mol;相对结晶度为0.5时,m(PBT)/m(PTT)为50∶50的合金活化能比PTT(-77.4 kJ/mol)还高.  相似文献   

11.
通过熔融共混法制备了聚对苯二甲酸乙二醇酯(PET)与聚对苯二甲酸醇酯(PTT)的共混物,采用差示扫描量热仪、动态热机械分析仪、万能电子试验机等对共混体系的热性能、动态力学性能及拉伸性能进行了测试。测得PET/PTT共混体系只有1个玻璃化转变温度(Tg)和损耗峰,表明在非晶区完全相容,其中纯PET的Tg为84℃,纯PTT的Tg低于50℃; 而双重熔融峰及热结晶峰宽化现象的出现表明,共混体系在晶区是部分相容,各组分倾向于分别进行有序化排列、单独结晶,其中纯PET的熔点为256℃,纯PTT的熔点为229 ℃;共混体系的拉伸模量和拉伸强度随PTT含量的增加呈上升趋势;但当共混比例接近时体系的拉伸模量和拉伸强度有所下降,共混比为5/5时的拉伸模量和拉伸强度分别低达1098MPa和51MPa。  相似文献   

12.
Melting behavior, nonisothermal crystallization and isothermal crystallization kinetics of polypropylene (PP) with metallocene‐catalyzed linear low density polyethylene (mLLDPE) were studied by differential scanning calorimetry (DSC). The results show that PP and mLLDPE were partially miscible. The Avrami analysis was applied to analyze the nonisothermal and isothermal crystallization kinetics of the blends, the Mo Z.S. method was used to take a comparison in nonisothermal kinetics. Values of Avrami exponent indicate the crystallization nucleations of both pure PP and PP in the blends were heterogeneous, the growth of spherulites is tridimensional and the spherulites in the blends were more perfect than that in pure PP. The crystallization activation energy was estimated by Kissinger method and Arrhenius equation and the two methods draw similar results. The mLLDPE increased the crystallization rate of PP in nonisothermal crystallization process and decreased it in isothermal process. The results from nonisothermal crystallization and isothermal crystallization kinetics were not consistent because the two processes were completely different. Addition of minor mLLDPE phase favors to increase the overall crystallinity of PP, showing the mLLDPE entered the PP crystals. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
采用DSC方法对聚对苯二甲酸丙二酯进行等温与非等温结晶动力学研究,利用不同动力学模型对其结晶过程进行分析.结果表明,在等温结晶过程中,Avrami指数n和半结晶时间随着结晶温度的升高而增大,结晶速率常数K随着结晶温度的升高而减小;在非等温结晶的过程中,结晶动力学常数Zc和相对过冷度△Tc随着降温速率的提高而上升,Avr...  相似文献   

14.
In the current work, a series of biodegradable poly(ethylene terephthalate-co-ethylene succinate)s (P[ET-co-ES]s) were prepared via a traditional melting polycondensation method. First of all, the structures of prepared copolymers were characterized by nuclear magnetic resonance and Fourier transform infrared measurements. Meanwhile, the thermal properties of prepared samples were analyzed by differential scanning calorimetry and thermogravimetric analysis measurements, respectively. Subsequently, the mechanical properties of the P(ET-co-ES)s were evaluated, the tensile strength of P(ET-co-ES)s decreased with increasing of PES content in copolymer, however, corresponding P(ET-co-ES)s exhibited better elongation at break. Next, the biodegradability of P(ET-co-ES)s was evaluated using lipase as degrading enzyme. The results presented that the biodegradability of P(ET-co-ES)s improved with PES content, the corresponding results were supported by scanning electron microscopy test. Finally, the Mo's modified Avrami equation was employed to analyze the nonisothermal crystallization kinetics of prepared copolymers. The results showed the addition of the PES component improved the crystallization properties of the prepared P(ET-co-ES)s. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48422.  相似文献   

15.
The crystallization and melting behaviors as well as the crystalline morphologies of Poly(ethylene terephthalate)/Poly(m‐xylylene adipamide) (PET/MXD6) blends have been examined and characterized with the aid of differential scanning calorimetry (DSC) and wide angle x‐ray diffraction (WAXD). The isothermal and nonisothermal crystallization behaviors of the blends were studied as functions of the contents of MXD6, catalyst concentrations, and the effects of the interchange reactions between PET and MXD6. Wide angle x‐ray scattering has been used to examine the crystalline morphologies of the PET/MXD6 blends, to characterize their crystalline and amorphous phases, and to determine crystallite sizes in the blends. Results indicate that the catalyst has both catalyzing and nucleation effects on the PET/MXD6 blends, with the extents of each effect dependent upon the content of catalyst. In addition the crystalline morphology was found to be dominated by the MXD6 content as well as the crystallization temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
采用直接酯化熔融缩聚法合成了一系列不同含量的2-甲基-1,3-丙二醇(MPO)改性的共聚酯,并采用差示扫描量热仪(DSC)研究了其熔融结晶行为。结果表明,MPO的加入使聚对苯二甲酸丙二醇酯(PTT)熔点和结晶温度降低,加入摩尔比为20 %的MPO可以使PTT熔点由原来的226.64 ℃降至201.78 ℃,加入摩尔比为10 %的MPO可以使PTT结晶温度由原来的159.01 ℃降至137.50 ℃,同时使半结晶时间(t1/2)增大;随降温速率的提高,各样品的结晶温度向低温方向移动,放热峰由窄变宽,t1/2变小;不同降温速率下,改性共聚酯的结晶速率常数(Zc)比纯PTT的Zc减小。  相似文献   

17.
研究了聚对苯二甲酸丙二酯(PTT)/茂金属聚乙烯(mPE)共混体系的流变性能、结晶熔融行为、力学性能以及增容剂对共混物相形态的影响。结果表明:PTT/mPE共混物熔体为假塑性流体,熔体表观黏度随PTT含量的增加而迅速降低,PTT含量高于40%时共混物表观黏度迅速下降,PTT含量越多对温度变化的敏感性越强。PTT和mPE可分别结晶,但PTT组分的结晶峰温度Tpc和结晶熔融峰温度Tm均比纯PTT的明显提高,而mPE组分的Tpc和Tm与纯mPE的相近,mPE可以促进PTT熔体结晶,但已经形成的PTT晶体不影响mPE的结晶,mPE的结晶行为主要发生在mPE微相区内。增容剂马来酸酐接枝乙丙橡胶提高了PTT与mPE间的相容性,共混物的冲击强度随着增容剂的增加而提高,mPE和增容剂共同发挥了增韧作用。  相似文献   

18.
Melting behavior and crystallization kinetics of easy processing polyethylene (EPPE) and the blends of EPPE/mLLDPE were studied using differential scanning calorimetry at various crystallization temperature and cooling rates. The Avrami analysis was employed to describe the isothermal and nonisothermal crystallization process of pure polymers and their blends, and a method developed by Mo was applied for comparison. Kinetic parameters such as the Avrami exponent (n), the kinetic crystallization rate constant (k and kc), the peak temperatures (Tp), and the half-time of crystallization (t1/2), etc. were determined. The appearance of double melting peaks and the double crystallization peaks of the polymers showed that the main chain and the branches crystallize seperately, but the main chains of two polymers can crystallize together and mLLDPE act as nuclei while EPPE crystallizes. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
PTT的非等温结晶动力学研究   总被引:3,自引:0,他引:3  
采用DSC方法对PTT在不同冷却速率下的结晶过程进行了研究,并与PET进行了对比,其结晶动力学用Mandel Kern方法来处理。结果表明,PTF相对于PET更易成核结晶,PTT半结晶时间比PET长,冷却速率对PTT的半结晶时间影响大,并且PTF的非等温结晶动力学曲线的线性较PET好,能够更好的遵循Mandel Kern方法。  相似文献   

20.
Poly(ethylene terephthalate) (PET) was modified by regulating different contents of branching agent epoxy-based multifunctional oligomer and chain extender pyromellitic dianhydride in reactive extrusion process. The modified PET with better long-chain branched (LCB) structure boosted its rheological properties, and its enhancement of melt viscoelasticity resulted in excellent foamability in molten-state foaming process using supercritical CO2 as blowing agent. More importantly, the branched structures acted as crystal sites to accelerate the crystallization kinetic of LCB PET whether under atmospheric pressure or high-pressure CO2. The shear and elongation flow inside die further quickly induced the crystallization of LCB PET. The rapidly generated fine crystals could both introduce heterogeneous cell nucleation and suppress CO2 escape, so the cell morphology of LCB PET in continuous extrusion foaming process exhibited a three-fold increase in cell density and smaller uniform cell size with respect to those of other foam-grade PET with long-chain structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号