首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cystic fibrosis (CF) disease leads to altered lung and gut microbiomes compared to healthy subjects. The magnitude of this dysbiosis is influenced by organ-specific microenvironmental conditions at different stages of the disease. However, how this gut-lung dysbiosis is influenced by Pseudomonas aeruginosa chronic infection is unclear. To test the relationship between CFTR dysfunction and gut-lung microbiome under chronic infection, we established a model of P. aeruginosa infection in wild-type (WT) and gut-corrected CF mice. Using 16S ribosomal RNA gene, we compared lung, stool, and gut microbiota of C57Bl/6 Cftr tm1UNCTgN(FABPCFTR) or WT mice at the naïve state or infected with P. aeruginosa. P. aeruginosa infection influences murine health significantly changing body weight both in CF and WT mice. Both stool and gut microbiota revealed significantly higher values of alpha diversity in WT mice than in CF mice, while lung microbiota showed similar values. Infection with P. aeruginosa did not changed the diversity of the stool and gut microbiota, while a drop of diversity of the lung microbiota was observed compared to non-infected mice. However, the taxonomic composition of gut microbiota was shown to be influenced by P. aeruginosa infection in CF mice but not in WT mice. This finding indicates that P. aeruginosa chronic infection has a major impact on microbiota diversity and composition in the lung. In the gut, CFTR genotype and P. aeruginosa infection affected the overall diversity and taxonomic microbiota composition, respectively. Overall, our results suggest a cross-talk between lung and gut microbiota in relation to P. aeruginosa chronic infection and CFTR mutation.  相似文献   

2.
Oxidized LDL (oxLDL) has been shown to activate the sphingomyelinase pathway producing ceramide in vascular smooth muscle cells. Therefore ceramide, which is a biologically active lipid causing apoptosis in a variety of cells, may be involved in the apoptotic action of oxLDL. In this study, we examined whether cholesterol enriched diets affected ceramide metabolism and oxidation product of LDL, represented by degradation of apolipoprotein B-100 (apoB) in apoE-deficient (apoE−/−) mice. ApoE−/− and wild type mice were fed a standard (AIN-76) diet or 1% cholesterol-enriched diet for 8 weeks. Tissue ceramide levels were analyzed using electrospray tandem mass spectrometry (LC-MS/MS). Ceramide levels in the plasma and the liver of apoE−/− mice were intrinsically higher than those of the wild type. In apoE−/− mice, dietary cholesterol significantly increased several ceramides and degradation products of apoB in plasma compared to those fed the control diet. Dietary cholesterol did not affect tissue ceramide levels in the wild type mice. Based on these results, plasma ceramides possibly correlate with the increase in LDL oxidation and are a risk factor for atherosclerosis.  相似文献   

3.
The different mammalian sphingomyelinases are involved in cell regulation, apoptosis and inflammatory events. Recent reports suggest pharmacological potential especially for inhibitors of the acid sphingomyelinase. Phosphatidyl inositol‐3,5bisphosphate (PtdIns3,5P2) is the most potent selective acid sphingomyelinase inhibitor known to date. In the present study, we synthesized analogues of PtdIns3,5P2 for initial structure–activity‐relationship (SAR) studies. We identified an inhibitor that is easy to synthesize, that has superior chemical and biophysical properties when compared to PtdIns3,5P2 and that should be stable against virtually all phospholipases. Last but not least, the new inhibitor partially protected cells from dexamethasone‐induced cell death.  相似文献   

4.
5.
Bacterial infections in cystic fibrosis (CF) patients are an emerging health issue and lead to a premature death. CF is a hereditary disease that creates a thick mucus in the lungs that is prone to bacterial biofilm formation, specifically Pseudomonas aeruginosa biofilms. These biofilms are very difficult to treat because many of them have antibiotic resistance that is worsened by the presence of extracellular DNA (eDNA). eDNA helps to stabilize biofilms and can bind antimicrobial compounds to lessen their effects. The metallo-antimicrobial peptide Gaduscidin-1 (Gad-1) eradicates established P. aeruginosa biofilms through a combination of modes of action that includes nuclease activity that can cleave eDNA in biofilms. In addition, Gad-1 exhibits synergistic activity when used with the antibiotics kanamycin and ciprofloxacin, thus making Gad-1 a new lead compound for the potential treatment of bacterial biofilms in CF patients.  相似文献   

6.
We investigated the ways in which phospholipase A2 and sphingomyelinase are mutually modulated at lipid interfaces. The activity of one enzyme is affected by its own reaction products and by substrates and products of the other enzyme; all this depends differently on the lateral surface pressure. Ceramide inhibits both the sphingomyelinase activity rate and the extent of degradation, and decreases the lag time at all surface pressures. Dilauroyl- and dipalmitoylphosphatidyl-choline, the substrates of phospholipase A2 (PLA2), do not affect sphingomyelinase activity. The products of PLA2, palmitic acid and lysopalmitoylphosphatidylcholine, strongly enhance and shift to high surface pressures the activity optimum and the cut-off point of sphingomyelinase. Palmitic acid also shifts to high surface pressures the cut-off point of PLA2 activity. Sphingomyelin strongly inhibits PLA2 at surface pressures above 5 mN/m, while ceramide shifts the cut-off point and the activity optimum to high surface pressures. The sphingolipids increase the lag time of PLA2 at low surface pressures. Both phosphohydrolytic pathways involve different levels of control on precatalytic steps and on the rate of activity that appear independent on specific alterations of molecular packing and surface potential. The mutual lipid-mediated interfacial modulation between both phosphohydrolytic pathways indicates that phospholipid degradation may be self-amplified or dampened depending on subtle changes of surface pressure and composition.  相似文献   

7.
This is the first report of the chemical and biological properties of the lipooligosaccharide (LOS) endotoxin isolated from Burkholderia dolosa IST4208, an isolate recovered from a cystic fibrosis (CF) patient in a Portuguese CF center. B. dolosa is a member of the Burkholderia cepacia complex, a group of closely related species that are highly problematic and opportunistic pathogens in CF. B. dolosa infection leads to accelerated loss of lung function and decreased survival. The structural determination of its endotoxin was achieved using a combination of chemistry and spectroscopy, and has revealed a novel endotoxin structure. The purified LOS was tested for its immunostimulatory activity on human HEK 293 cells expressing TLR‐4, MD‐2, and CD‐14. In these assays, the LOS showed strong proinflammatory activity.  相似文献   

8.
Persistent infections, such as those provoked by the Gram-negative bacterium Pseudomonas aeruginosa in the lungs of cystic fibrosis (CF) patients, can induce inflammation with lung tissue damage and progressive alteration of respiratory function. Therefore, compounds having both antimicrobial and immunomodulatory activities are certainly of great advantage in fighting infectious diseases and chronic inflammation. We recently demonstrated the potent antipseudomonal efficacy of the antimicrobial peptide (AMP) Esc(1-21) and its diastereomer Esc(1-21)-1c, namely Esc peptides. Here, we confirmed this antimicrobial activity by reporting on the peptides’ ability to kill P. aeruginosa once internalized into alveolar epithelial cells. Furthermore, by means of enzyme-linked immunosorbent assay and Western blot analyses, we investigated the peptides’ ability to detoxify the bacterial lipopolysaccharide (LPS) by studying their effects on the secretion of the pro-inflammatory cytokine IL-6 as well as on the expression of cyclooxygenase-2 from macrophages activated by P. aeruginosa LPS. In addition, by a modified scratch assay we showed that both AMPs are able to stimulate the closure of a gap produced in alveolar epithelial cells when cell migration is inhibited by concentrations of Pseudomonas LPS that mimic lung infection conditions, suggesting a peptide-induced airway wound repair. Overall, these results have highlighted the two Esc peptides as valuable candidates for the development of new multifunctional therapeutics for treatment of chronic infectious disease and inflammation, as found in CF patients.  相似文献   

9.
Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed.  相似文献   

10.
Ceramide is a lipid messenger at the heart of sphingolipid metabolism. In concert with its metabolizing enzymes, particularly sphingomyelinases, it has key roles in regulating the physical properties of biological membranes, including the formation of membrane microdomains. Thus, ceramide and its related molecules have been attributed significant roles in nearly all steps of the viral life cycle: they may serve directly as receptors or co-receptors for viral entry, form microdomains that cluster entry receptors and/or enable them to adopt the required conformation or regulate their cell surface expression. Sphingolipids can regulate all forms of viral uptake, often through sphingomyelinase activation, and mediate endosomal escape and intracellular trafficking. Ceramide can be key for the formation of viral replication sites. Sphingomyelinases often mediate the release of new virions from infected cells. Moreover, sphingolipids can contribute to viral-induced apoptosis and morbidity in viral diseases, as well as virus immune evasion. Alpha-galactosylceramide, in particular, also plays a significant role in immune modulation in response to viral infections. This review will discuss the roles of ceramide and its related molecules in the different steps of the viral life cycle. We will also discuss how novel strategies could exploit these for therapeutic benefit.  相似文献   

11.
Secretory sphingomyelinase (sSMase) has been suggested to be involved in the development of cardiovascular diseases as well as other human pathologies. To deduce whether dietary fatty acid composition affects the circulating activity of this enzyme, we have compared its activity in serum from rats that had been given a diet containing either butter or a highly n‐6 polyunsaturated [grapeseed oil (GSO)] fat source for 14 wk. The results show that intake of GSO increases the activity of this ceramide‐producing enzyme by about 45%, when compared with intake of butter (387 ± 16 pmol/mL·h vs. 266 ± 15 pmol/mL·h; p <0.001). Furthermore, there was a strong negative correlation between sSMase activity and n‐3 PUFA concentration in serum (p <0.001). Despite the substantial increase in activity, there was no difference in either the circulating substrate (sphingomyelin) or product (ceramide) in the serum. However, since the sSMase activity in the endothelial wall has been implicated to be involved in both atherogenesis and thrombosis, these findings are of interest in the interpretation of dietary fatty acid effects on cardiovascular health.  相似文献   

12.
A series of benzimidazole–quinolone hybrids as new potential antimicrobial agents were designed and synthesized. Bioactive assays indicated that some of the prepared compounds exhibited potent antibacterial and antifungal activities. Notably, 2‐fluorobenzyl derivative 5 b (ethyl 7‐chloro‐6‐fluoro‐1‐[[1‐[(2‐fluorophenyl)methyl]benzimidazol‐2‐yl]methyl]‐4‐oxo‐quinoline‐3‐carboxylate) showed remarkable antimicrobial activity against resistant Pseudomonas aeruginosa and Candida tropicalis isolated from infected patients. Active molecule 5 b could not only rapidly kill the tested strains, but also exhibit low toxicity toward Hep‐2 cells. It was more difficult to trigger the development of bacterial resistance of P. aeruginosa against 5 b than that against norfloxacin. Molecular docking demonstrated that 5 b could effectively bind with topoisomerase IV–DNA complexes, and quantum chemical studies theoretically elucidated the good antimicrobial activity of compound 5 b . Preliminary experimental reaction mechanism exploration suggested that derivative 5 b could not intercalate into DNA isolated from drug‐resistant P. aeruginosa, but was able to cleave DNA effectively, which might further block DNA replication to exert powerful bioactivities. In addition, compound 5 b is a promising antibacterial agent with membrane disruption abilities.  相似文献   

13.
Pseudomonas aeruginosa uses N‐acylated l ‐homoserine lactone signals and a triumvirate of LuxR‐type receptor proteins—LasR, RhlR, and QscR—for quorum sensing (QS). Each of these receptors can contribute to QS activation or repression and, thereby, the control of myriad virulence phenotypes in this pathogen. LasR has traditionally been considered to be at the top of the QS receptor hierarchy in P. aeruginosa; however, recent reports suggest that RhlR plays a more prominent role in infection than originally predicted, in some circumstances superseding that of LasR. Herein, we report the characterization of a set of synthetic, small‐molecule agonists and antagonists of RhlR. Using E. coli reporter strains, we demonstrated that many of these compounds can selectively activate or inhibit RhlR instead of LasR and QscR. Moreover, several molecules maintain their activities in P. aeruginosa at concentrations analogous to native RhlR signal levels. These compounds represent useful chemical probes to study the role of RhlR in the complex QS circuitry of P. aeruginosa, its direct (and indirect) effects on virulence, and its overall merit as a target for anti‐infective therapy.  相似文献   

14.
Lectin A (LecA) from Pseudomonas aeruginosa is an established virulence factor. Glycoclusters that target LecA and are able to compete with human glycoconjugates present on epithelial cells are promising candidates to treat P. aeruginosa infection. A family of 32 glycodendrimers of generation 0 and 1 based on a bifurcated bis‐galactoside motif have been designed to interact with LecA. The influences both of the central multivalent core and of the aglycon of these glycodendrimers on their affinity toward LecA have been evaluated by use of a microarray technique, both qualitatively for rapid screening of the binding properties and also quantitatively (Kd). This has led to high‐affinity LecA ligands with Kd values in the low nanomolar range (Kd=22 nm for the best one).  相似文献   

15.
Adhesion of uropathogens to epithelial cells is considered as an indispensable prerequisite for the manifestation of urinary tract infections. This study was carried out to investigate the influence of urinary constituents, such as glucose, lactose, urea and creatinine either alone or in combination, on the adhesion of uroisolates of Pseudomonas aeruginosa (planktonic and biofilm cells) to uroepithelial cells (UECs). It was observed that with increase in concentrations of these urinary constituents there was increase in adhesion of both cell forms of P. aeruginosa to UECs. This was true for all the strains of P. aeruginosa. The results of the present study bring out that environmental conditions prevalent in the host milieu under different physiological and pathological conditions have the potential to alter the adhesion ability of P. aeruginosa which may play an important role in deciding the ultimate outcome of an infection.  相似文献   

16.
Sphingomyelin (ceramide‐phosphocholine, CerPCho) is a common sphingolipid in mammalian cells and is composed of phosphorylcholine and ceramide as polar and hydrophobic components, respectively. In this study, a qualitative liquid chromatography‐electrospray ionization tandem mass spectrometry (LC–ESI–MS/MS/MS) analysis is proposed in which CerPCho structures were assigned based on product ion spectra corresponding to sphingosylphosphorylcholine and N‐acyl moieties. From MS/MS/MS analysis of CerPCho, we observed product ion spectra of the N‐acyl fatty acids as [RCO2]? ions as well as sphingosylphosphorylcholine. A calibration curve for CerPCho was constructed using two stable isotopically labeled CerPCho species and then used to quantify the CerPCho species in HeLa cells as a proof‐of‐principle study. The present study proposes an accurate method for quantifying and assigning structures to each CerPCho species in crude biologic samples by LC–ESI–MS/MS/MS analysis.  相似文献   

17.
Bacterial biofilms are surface-attached communities of slow-growing and non-replicating persister cells that demonstrate high levels of antibiotic tolerance. Biofilms occur in nearly 80 % of infections and present unique challenges to our current arsenal of antibiotic therapies, all of which were initially discovered for their abilities to target rapidly dividing, free-floating planktonic bacteria. Bacterial biofilms are credited as the underlying cause of chronic and recurring bacterial infections. Innovative approaches are required to identify new small molecules that operate through bacterial growth-independent mechanisms to effectively eradicate biofilms. One source of inspiration comes from within the lungs of young cystic fibrosis (CF) patients, who often endure persistent Staphylococcus aureus infections. As these CF patients age, Pseudomonas aeruginosa co-infects the lungs and utilizes phenazine antibiotics to eradicate the established S. aureus infection. Our group has taken a special interest in this microbial competition strategy and we are investigating the potential of phenazine antibiotic-inspired compounds and synthetic analogues thereof to eradicate persistent bacterial biofilms. To discover new biofilm-eradicating agents, we have established an interdisciplinary research program involving synthetic medicinal chemistry, microbiology and molecular biology. From these efforts, we have identified a series of halogenated phenazines (HPs) that potently eradicate bacterial biofilms, and future work aims to translate these preliminary findings into ground-breaking clinical advances for the treatment of persistent biofilm infections.  相似文献   

18.
Acrylic acid was grafted to ozone‐treated poly(3‐hydroxybutyric acid) (PHB) and poly(3‐hydroxybutyric acid‐co‐3‐hydroxyvaleric acid) (PHBV) membranes. The resulting membranes were further grafted with chitosan (CS) or chitooligosaccharide (COS) via esterification. These CS‐ or COS‐grafted membranes showed antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, methicilin‐resistant Staphylococcus aureus (MRSA), and S. aureus. The antibacterial activity to E. coli was the highest, whereas the antibacterial activity to MRSA was the lowest among these four bacteria tested. Acrylic acid grafting can increase the biodegradability with Alcaligens faecalis, whereas CS and COS grafting can reduce the biodegradability. In addition, CS‐grafted PHBV membrane showed higher antibacterial activity and lower biodegradability than COS‐grafted PHBV membrane. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 12: 2797–2803, 2003  相似文献   

19.
Ceramide phosphorylglycerol phosphate a new sphingolipid found in bacteria   总被引:4,自引:0,他引:4  
Ceramide phosphorylglycerol phosphate (CPGP) has been identified in the lipid extract of the anaerobic bacteriumBacteroides melaninogenicus. To our knowledge this is the first report of this lipid in biological material. The ceramide derivative contains two phosphates, an amide linked fatty acid and a dihydrosphingosine long chain base. Glycerol diphosphate (PGP) identified by paper and column chromatography can be isolated after mild acid hydrolysis of the ceramide derivative. Inorganic phosphate is liberated quantitatively on treatment of the PGP from the ceramide derivative with alkaline phosphatase. The proportions of the fatty acids found linked to the amide of the dihydrosphingosine (LCB) differ from those esterified to cardiolipin in this organism. The long chain base appears to consist of part of an homologous series of branched and normal LCB containing from 17 to 21 carbon atoms. Previous work has indicated that ceramide phosphorylethanolamine and ceramide phosphorylglycerol (CPG) are present in the lipid extracts ofB. melaninogenicus. By analogy with phosphatidylglycerol synthesis, CPGP is postulated to be an intermediate in the synthesis of CPG.  相似文献   

20.
Many bacteria regulate gene expression through a cell–cell signaling process called quorum sensing (QS). In proteobacteria, QS is largely mediated by signaling molecules known as N‐acylated L ‐homoserine lactones (AHLs) and their associated intracellular LuxR‐type receptors. The design of non‐native small molecules capable of inhibiting LuxR‐type receptors (and thereby QS) in proteobacteria is an active area of research, and numerous lead compounds are AHL derivatives that mimic native AHL molecules. Much of this previous work has focused on the pathogen Pseudomonas aeruginosa, which controls an arsenal of virulence factors and biofilm formation through QS. The MexAB‐OprM efflux pump has been shown to play a role in the secretion of the major AHL signal in P. aeruginosa, N‐(3‐oxododecanoyl) L ‐homoserine lactone. In the current study, we show that a variety of non‐native AHLs and related derivatives capable of inhibiting LuxR‐type receptors in P. aeruginosa display significantly higher potency in a P. aeruginosa Δ(mexAB‐oprM) mutant, suggesting that MexAB‐OprM also recognizes these compounds as substrates. We also demonstrate that the potency of 5,6‐dimethyl‐2‐aminobenzimidazole, recently shown to be a QS and biofilm inhibitor in P. aeruginosa, is not affected by the presence/absence of the MexAB‐OprM pump. These results have implications for the use of non‐native AHLs and related derivatives as QS modulators in P. aeruginosa and other bacteria, and provide a potential design strategy for the development of new QS modulators that are resistant to active efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号