首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, polyamide 66 (PA66) and its composites with multiwalled carbon nanotubes (MWNTs) were melt spun into fibers at different draw ratios. PA66 fibers at high draw ratio demonstrate a 40% increase in tensile strength, 66% increase in modulus and a considerable increase in toughness. It is demonstrated that this reinforcement can be mainly attributed to high‐draw‐ratio‐induced good dispersion and orientation of MWNTs, particularly the enhanced interfacial adhesion between MWNT and matrix thanks to interfacial crystallization. Our work provides a simple but efficient method to achieve good dispersion and strong interfacial interaction through melt spinning. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
BACKGROUND: The technological development of poly(ε‐caprolactone) (PCL) is limited by its short useful lifespan, low modulus and high crystallinity. There are a few papers dealing with the crystallization behavior of carbon nanotube‐reinforced PCL composites. However, little work has been done on the crystallization kinetics of melt‐compounded PCL/multiwalled carbon nanotube (MWNT) nanocomposites. In this study, PCL/MWNT nanocomposites were successfully prepared by a simple melt‐compounding method, and their morphology and mechanical properties as well as their crystallization kinetics were studied. RESULTS: The MWNTs were observed to be homogeneously dispersed throughout the PCL matrix. The incorporation of a very small quantity of MWNTs significantly improved the storage modulus and loss modulus of the PCL/MWNT nanocomposites. The nonisothermal crystallization behavior of the PCL/MWNT nanocomposites exhibits strong dependencies of the degree of crystallinity (Xc), peak crystallization temperature (Tp), half‐time of crystallization (t1/2) and Avrami exponent (n) on the MWNT content and cooling rate. The MWNTs in the PCL/MWNT nanocomposites exhibit a higher nucleation activity. The crystallization activation energy (Ea) calculated with the Kissinger model is higher when a small amount of MWNTs is added, then gradually decreases; all the Ea values are higher than that of pure PCL. CONCLUSION: This paper reports for the first time the preparation of high‐performance biopolymer PCL/MWNT nanocomposites prepared by a simple melt‐compounding method. The results show that the PCL/MWNT nanocomposites can broaden the applications of PCL. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
Shape memory composites of hyperbranched polyurethane (HBPU) and acid‐treated multi‐walled carbon nanotubes (MWNTs) were prepared using an in situ polymerization method. HBPUs with different hard segments contents were synthesized via the A2 + B3 approach using poly(ethylene glycol) (PEG) as a soft segment, 4,4′‐methylene bis(phenylisocynate), castor oil, and 1,4‐butanediol as hard segment. Compared to HBPU, the HBPU/MWNT composites showed faster shape recovery and double the shape recovery stress in the thermomechanical shape memory test, which was dependent on the MWNTs content and HBPU hard segment content. The water‐responsive shape memory effect of HBPU/MWNT composites was considered to result from the combined contribution of hydrophilic PEG and well dispersed MWNTs in highly branched HBPU molecules. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
The ethylene methyl acrylate copolymer (EMA) and multiwalled carbon nanotube (MWNT) based composites were prepared by solution mixing as well as by melt processing of the films obtained after solution mixing. Field emission scanning electron microscopy, transmission electron microscopy, and XRD were used to characterize morphologies of various composites. MWNTs were found to be more dispersed in the composites prepared by melt process after solution process. There was no obvious agglomeration of MWNTs at lower % loading (up to 2.5%) in the polymer matrices especially the composites are prepared solution plus melt mixing and consequently better interaction between MWNTs and EMA matrix was anticipated. XRD and differential scanning calorimetry studied showed that the nanotubes affect the crystallization process and subsequently their role as a nucleating agent was established. These are reflected in the mechanical properties of the composites. Dynamic mechanical analysis showed that the storage modulus of the composites drop very sharply beyond 2.5 wt% of MWNT content with increasing % strain and it reflects the Payne effect (a substantial decrease in the storage modulus of a particle‐reinforced polymer with an increase in the amplitude of dynamic oscillations). The influence of concentration of filler was also realized by frequency sweep experiment. The incorporation of MWNTs in EMA offered a stabilizing effect since onset of degradation occurs at higher temperatures for composites. POLYM. COMPOS., 31:1168–1178, 2010. © 2009 Society of Plastics Engineers  相似文献   

5.
Polyaniline (PANI)/multiwalled carbon nanotube (MWNT) composites with a uniform tubular structure were prepared from in situ polymerization by dissolving amino‐functionalized MWNT (a‐MWNT) in aniline monomer. For this the oxidized multiwalled nanotube was functionalized with ethylenediamine, which provided ethylenediamine functional group on the MWNT surface confirmed by Fourier‐transform infrared spectra (FT‐IR). The a‐MWNT was dissolved in aniline monomer, and the in situ polymerization of aniline in the presence of these well dispersed nanotubes yielded a novel tubular composite of carbon nanotube having an ordered uniform encapsulation of doped polyaniline. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that the nanotubes were coated with a PANI layer. The thermal stability and electrical conductivity of the PANI /MWNTs composites were characterized by thermogravimetric analysis (TGA) and conventional four‐probe method respectively. Compared with pure PANI, the electrical conductivity and the decomposition temperature of the MWNTs/PANI composites increased with the enhancement of MWNT content in PANI matrix. POLYM. COMPOS., 34:1119–1125, 2013. © 2013 Society of Plastics Engineers  相似文献   

6.
Differential scanning calorimeter (DSC) and polarized optical microscopy (POM) have been used to investigate the isothermal and nonisothermal crystallization behavior of poly(ε‐caprolactone) (PCL)/multi‐walled carbon nanotube (MWNT) composites. PCL/MWNT composites have been prepared by mixing the PCL polymer with carboxylic groups containing multi‐walled carbon nanotubes (c‐MWNTs) in tetrahydrofuran solution. Raman spectrum of c‐MWNT indicated the possible presence of carboxylic acid groups at both ends and on the sidewalls of the MWNTs. The TEM micrograph showed that the c‐MWNT is well separated and uniformly dispersed in the PCL matrix. DSC isothermal results showed that the introduction of c‐MWNT into the PCL initiates strongly heterogeneous nucleation, which induced a change of the crystal growth process. The activation energy of PCL significantly decreases by adding 0.25 wt% c‐MWNT into PCL/c‐MWNT composites and then increases as c‐MWNT content increases. The result demonstrates that the addition of c‐MWNT into PCL induces the heterogeneous nucleation at lower c‐MWNT content and then inhibits the polymer chain transportation ability during crystallization at higher c‐MWNT content. In this study, we have also studied the nonisothermal crystallization kinetics and melting behavior of PCL/c‐MWNT composites at various cooling rates. The correlation among isothermal and nonisothermal crystallization kinetics and melting behavior of PCL/c‐MWNT composites can be also discussed. POLYM. ENG. SCI., 46:1309–1317, 2006. © 2006 Society of Plastics Engineers  相似文献   

7.
Multiwalled carbon nanotube (MWNT)–polyurethane (PU) composites were obtained by an in situ polycondensation approach. The effects of the number of functional groups on the dispersion and mechanical properties were investigated. The results showed that the functionalized MWNTs had more advantages for improving the dispersion and stability in water and N,N′‐dimethylformamide. The tensile strength and elongation at break of the composites exhibited obvious increases with the addition of MWNT contents below 1 wt % and then decreases with additions above 1 wt %. The maximum values of the tensile strength and elongation at break increased by 900 and 741%, respectively, at a 1 wt % loading of MWNTs. Differential scanning calorimetry measurements indicated that the addition of MWNTs resulted in an alteration of the glass‐transition temperature of the soft‐segment phase of MWNT–PU. Additionally, new peaks near 54°C were observed with differential scanning calorimetry because of the microphase‐separation structures and alteration of the segment molecular weights of the hard segment and soft segment of PU with the addition of MWNTs. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Thermoresponsive shape memory (SMP) fibers were prepared by melt spinning from a polyester polyol‐based polyurethane shape memory polymer (SMP) and were subjected to different postspinning operations to modify their structure. The effect of drawing and heat‐setting operations on the shape memory behavior, mechanical properties, and structure of the fibers was studied. In contrast to the as‐spun fibers, which were found to show low stress built up on straining to temporary shape and incomplete recovery to the permanent shape, the drawn and heat‐set fibers showed significantly higher stresses and complete recovery. The fibers drawn at a DR of 3.0 and heat‐set at 100°C gave stress values that were about 10 times higher than the as‐spun fibers at the same strain and showed complete recovery on repeated cycling. This improvement was likely due to the transformation brought about in the morphology of the permanent shape of the SMP fibers from randomly oriented weakly linked regions of hard and soft segments to the well‐segregated, oriented and strongly H‐bonded regions of hard‐segments. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2172–2182, 2007  相似文献   

9.
P(AN‐co‐VA‐co‐DEMA) terpolymers were synthesized by aqueous precipitation copolymerization of acrylonitrile (AN), vinyl acetate (VA), and 2‐dimethylamino ethyl methacrylate (DEMA) with an Na2S2O5–NaClO3 redox initiating system and fibers from these terpolymers were thus prepared by a wet spinning method. Functionalized multiwalled carbon nanotube (F‐MWNT) networks were created on the surface of P(AN‐co‐VA‐co‐DEMA) fibers by a simple dipping method. The morphology and interfacial interactions of the obtained F‐MWNTs‐coated fibers were characterized by scanning electron microscope, Raman spectroscopy, and Fourier transform infrared spectroscopy. The results showed that F‐MWNTs were assembled on the fibers and the density of F‐MWNTs can be controlled by adjusting the F‐MWNTs content in the dipping solution. The assembly process was driven by electrostatic interactions between the negative charges on the nanotube sidewalls and the positive charges of the fibers. The F‐MWNTs‐coated fibers had a good conductivity. The volume resistivity of the fibers coated with 1.18 wt % F‐MWNTs reached 0.27 Ω·cm, while the original mechanical properties were preserved. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42545.  相似文献   

10.
Hydroxyl functionalized multiwalled carbon nanotubes (H‐MWNTs) were silanized using 3‐aminopropyltriethoxysilane (APTES) in order to improve the dispersion and interfacial interaction in composites. MWNT/polycarbonate (PC) composites filled with H‐MWNTs and silanized MWNTs (S‐MWNTs) were fabricated by melt mixing and injection molding. Fourier transform infrared spectrometry (FTIR) and energy dispersion X‐ray spectroscopy (EDS) were employed to prove the presence of APTES on the surface of S‐MWNTs. In addition, thermogravimetric analysis (TGA) was used to evaluate the relative amount of introduced APTES. The microstructure and mechanical property of both composites were investigated by scanning electron microscopy (SEM), transmission electron microscope (TEM), tensile test and dynamic mechanical analysis (DMA). The SEM and TEM images showed that S‐MWNT/PC composites had better dispersion and interfacial adhesion than H‐MWNT/PC composites. A reinforcing and toughening effect on tensile behavior of composites was obtained after silane functionalization. The storage modulus of composites increased markedly as a function of MWNTs content, especially for the composites with S‐MWNTs. In summary, the silanization can improve the dispersion of MWNTs and the interfacial adhesion between MWNTs and PC so as to enhance the mechanical properties of composites. POLYM. COMPOS., 37:1914–1923, 2016. © 2015 Society of Plastics Engineers  相似文献   

11.
The carbon nanotube possesses outstanding physical properties. Theoretically, adding carbon nanotubes into a polymer matrix can remarkably improve the mechanical properties of the polymer matrix. In the present work, a series of composites was prepared by incorporating multiwalled carbon nanotubes (MWNTs) into an epoxy resin. The influences of MWNT content and curing temperature on the flexural properties of the epoxy resin were investigated. The results showed that a very low MWNT content should be used to ensure homogeneous dispersion of MWNTs in the epoxy matrix. A higher MWNT content may lead to deteriorated mechanical properties of the composites because of the aggregation of MWNTs. A decline in the flexural properties of the neat epoxy resin with increasing curing temperature was found. However, under the same curing conditions, improvement in flexural properties was observed for the composite with the low MWNT content and a mild curing temperature. The improvement was far beyond the predictions of the traditional short‐fiber composite theory. In fact, this improvement should be attributed to the retarding effect of MWNTs on the curing reaction of epoxy matrix. Therefore, the improvement in the flexural properties was only a pseudoreinforcement effect, not a nano‐reinforcement effect of the MWNTs on the epoxy resin. Perhaps, it is better for MWNTs to be used as functional fillers, such as electrical or thermal conductive fillers, than as reinforcements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3664–3672, 2006  相似文献   

12.
Densified multiwalled carbon nanotube (MWNT)–TiN composites with various MWNTs contents were successfully obtained through a spark plasma sintering (SPS) method. The thermal conductivity k was found to increase with the MWNT amount and temperature. In the presence of 5 wt% MWNTs, there was a 97% enhancement in k at 703 K compared with that of TiN. The high thermal conductivity of MWNTs, a good interfacial combination and a homogeneous dispersion of MWNTs are key issues to enhance the thermal conductivity of MWNT–TiN composites.  相似文献   

13.
The aim of this article was to elucidate the basic relationships between processing conditions and the mechanical and electrical properties of multiwalled carbon nanotube reinforced polymer composites. In conventional chopped fiber reinforced polymer composites, uniform distributions of fibers throughout the matrix are critical to producing materials with superior physical properties. Previous methods have dispersed carbon nanotubes by aggressive chemical modification of the nanotubes or by the use of a surfactant prior to dispersion. 1 , 2 Here, ultrasonic energy was used to uniformly disperse multiwalled nanotubes (MWNTs) in solutions and to incorporate them into composites without chemical pretreatment. Polystyrene (PS) solutions containing MWNTs were cast and spun to yield thin film MWNT composites. The rheology of PS/MWNT suspensions was modeled using the Carreau equation. MWNTs were found to align at the shear rates generated by the spin casting process. The tensile modulus and strain to failure of samples compared well to classical micromechanical models, increasing with MWNT loading. The composite films showed lower strains at the yield stress than neat PS films. The presence of MWNTs at 2.5 vol % fraction approximately doubles the tensile modulus, and transforms the film from insulating to conductive (surface resistivity, ρ, approaching 103 Ω/□). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2660–2669, 2002  相似文献   

14.
Polypropylene (PP)/multiwalled carbon nanotube (MWNT) composites were prepared with an environmentally benign processes. The surface functionalization of the MWNTs was performed with water as a solvent, and the functionalized MWNTs were mixed with PP to form composites with a melt process. The effects of the MWNTs on the mechanical and thermal properties of the composites were studied. The tensile strength and modulus of the composites increased with the amount of MWNTs. The thermal stability was also improved by the reinforced MWNTs. The MWNTs also improved the oxidative stability of the composite on UV irradiation. Although pure PP degraded almost completely after 12 h of irradiation, the composite reinforced with MWNTs retained some level of mechanical strength after UV irradiation. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
High electrochemical active free‐standing multiwalled carbon nanotube (MWNT) films have been synthesized from aniline oligomer functionalized MWNTs (MWNT‐AO), by using filtration of the acidic phosphate ester (APE) doped MWNT‐AO dispersions. The homogeneously distributed MWNTs endowed APE/MWNT films automatically releasing from the filter membrane. The sheet resistivity of MWNT‐AO (850 Ω sq?1) showed a lower value than that of carboxyl MWNTs (1273 Ω sq?1), due to the doping effect of MWNT on aniline oligomer, confirmed by the N1s X‐ray photoelectron spectrum. However, it showed a higher sheet resistivity value of 1526 Ω sq?1 after further doped by APE, because of the presence of unreacted dopant. After removing the residual insulating dopant by the vacuum filtration, the resultant APE/MWNT films showed the sheet resistivity value as low as 131 Ω sq?1. Thermogravimetric analysis showed that the MWNT loading in the film can be over than 77%, which showed the specific capacitance as high as 249 F g?1. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40259.  相似文献   

16.
Poly(butylene succinate) (PBS) nanocomposites with multiwalled carbon nanotubes (MWNTs) prepared by melt compounding were studied for the effect of MWNT dispersion on the modulus and crystallization kinetics. The nucleating effect of the addition of 0.1 wt % MWNT to PBS was clearly demonstrated. Differential scanning calorimetry nonisothermal crystallization studies showed a clear decrease in the half‐time of crystallization with increasing MWNT content in PBS/MWNT nanocomposites. It was observed with the Ozawa method that the Ozawa parameter values for the nanocomposites were lower than those for neat PBS, and this indicated that the crystal morphology was different. The storage modulus of the nanocomposites increased about 23% with the addition of only 0.1% MWNT in comparison with neat PBS, whereas the glass‐transition temperature was unaltered. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
s‐Triazine‐based hyperbranched polyurethanes (HBPUs) with different hard segments were synthesized by A2 + B3 approach. Various kinds of multiwalled carbon nanotube (MWNT) nanocomposites with HBPU were prepared to investigate an impact of hyperbranched polymer on dispersion of MWNTs in the polymer matrix and the resulting properties of nanocomposites. Synthesized HBPUs were characterized using FTIR and NMR measurements. The highly branched structures were found very effective in enhancing the pristine MWNT dispersion in the polymer matrix. As a result, the MWNT‐reinforced HBPU nanocomposites showed a steep increase in the yield stress and modulus and enhanced shape memory effect with an increase of hard segment and MWNT loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Shape memory fibers (SMFs) were prepared via a melt spinning process. The fibers were subject to different heat treatments to eliminate internal stress and structure deficiency caused during the melt spinning process. The influences of heat treatments on the SMF thermal properties, molecular orientation, tensile properties, dimensional stability, recovery force relaxation, and thermomechanical cyclic properties were studied. It was found that the heat treatments increased soft segment crystallinity and phase separation while decreased molecular orientation. The low‐temperature heat treatment increased the breaking elongation, shape fixity ratios, and decreased boiling water shrinkage while shape recovery ratios were decreased. High‐temperature treatment increased both the shape recovery ratios, fixity ratios, recovery stress stability and at the same time decreasing the fiber mechanical strength. The results from differential scanning calorimetry, molecular orientation apparatus, and cyclic tensile testing were used to illustrate the mechanism governing the mechanical properties and shape memory effect. To obtain comprehensive outstanding properties, the SMF is expected to be treated at a high temperature because of the hard segment high glass transition temperature. Unfortunately, the heat treatment could not be conducted at a too high temperature because the SMF became too tacky and soft due to the melting of the soft segment phase. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
A multiwalled carbon nanotube (c‐MWNT)/polyaniline (PANI) composite was synthesized by an in situ chemical oxidative polymerization process. With the carbon nanotube loading increased from 0 to 30 wt %, the conductivity also increased and became weakly temperature‐dependent. Fourier transform infrared spectroscopy studies showed that the synthesis by an in situ process led to effective site‐selective interactions between the quinoid ring of the PANI and the multiwalled nanotubes, facilitating charge‐transfer processes between the two components. The morphological analysis indicated that the c‐MWNTs were well dispersed and isolated, and the tubes became crowded proportionally to the weight percentage of c‐MWNTs used in the composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Crystallization behavior of poly(ethylene terephthalate)/multiwalled carbon nanotubes (PET/MWNTs) composites have been investigated under isothermal conditions and in comparison with the conventional nucleating agents, sodium benzoate, and micrometric carbon/glass fibers. In the PET/MWNTs composites, MWNTs promote the crystallization of PET as a heterogeneous nucleating agent, and the nucleation efficiency is greatly enhanced when MWNTs was homogeneously dispersed in PET matrix. In comparison with pure PET, spherulites size of PET/MWNTs composites is significantly reduced, and the shape becomes quite irregular. TEM images indicate that MWNTs bundles locate in the center of spherulites of PET and act as nuclei. Fold surface free energy during nucleation process for MWNTs nucleated PET is just half of pure PET, suggesting that MWNTs are efficient nucleating agents for PET. The sequence of nucleating ability of is given as follows: sodium benzoate>MWNTs>talc>carbon fibers≈glass fibers. The nucleation in the presence of sodium benzoate is a chemical nucleation process that may cause severe degradation of PET, but MWNTs nucleate PET through “particle effect,” which does not affect the molecular weight of PET. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号