首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polypropylene (PP)‐based nanocomposites containing 4 wt% maleic anhydride grafted PP (PP‐g‐MA) and 2 wt% Cloisite 20A (C20A) were prepared using various processing devices, viz., twin‐screw extruder (TSE), single‐screw extruder (SSE), and SSE with an extensional flow mixer (EFM). Two processing methods were employed: (I) masterbatch (MB) preparation in a TSE (with 10 wt% C20A and clay/compatibilizer ratio of 1:2), followed by dilution in TSE, SSE, or SSE + EFM, to 2 wt% clay loading; (II) single pass, i.e., directly compounding of dry‐blended PP‐g‐MA/clay in TSE, SSE, or SSE + EFM. It has been indicated that the quality of clay dispersion, both at micro‐ and nanolevel, of the nanocomposites depends very much on the operating conditions during processing, such as mixing intensity and residence time, thus affecting the mechanical performance. Besides that the degradation of the organoclay and the matrix is also very sensitive to these parameters. According to results of X‐ray diffraction, field emission gun scanning electron microscopy, transmission electron microscopy, and mechanical tests, the samples prepared with MB had better overall clay dispersion, which resulted in better mechanical properties. The processing equipment used for diluting MB had a marginal influence on clay dispersion and nanocomposite performance. POLYM. ENG. SCI., 47:1447–1458, 2007. © 2007 Society of Plastics Engineers  相似文献   

2.
This work seeks to optimize the twin‐screw compounding of polymer‐clay nanocomposites (PCNs). Proportional amounts (3:1) of maleic anhydride functionalized polypropylene compatibilizer (PP‐g‐MA) and organically modified montmorillonite clay at clay loadings of 1, 3, and 5 wt% were melt‐blended with a polypropylene (PP) homopolymer using a Leistritz Micro 27 twin‐screw extruder. Three melt‐blending approaches were pursued: (1) a masterbatch of PP‐g‐MA and organoclay were blended in one pass followed by dilution with the PP resin in a second pass; (2) all three components were processed in a single pass; and (3) uncompatibilized PP and organoclay were processed twice. Both corotation and counterrotation operation were utilized to investigate the effect of screw rotation mode and sequence on organoclay exfoliation and dispersion. X‐ray diffraction was employed to characterize basal spacing; however, since rheology is known to be highly sensitive to mesoscale organoclay structure, it is an ideal tool to examine the relationship between the various processing methods and exfoliation and dispersion. A holistic analysis of rheological data demonstrates the efficacy of the masterbatch approach, particularly when compatibilizer and organoclay are blended in counterrotating mode followed by dilution with matrix polymer in corotating mode. POLYM. ENG. SCI., 47:898–911, 2007. © 2007 Society of Plastics Engineers  相似文献   

3.
Natural fiber‐reinforced nanocomposites based on polypropylene/nanoclay/banana fibers were fabricated by melt mixing in a twin‐screw extruder followed by compression molding in this current study. Maleic anhydride polypropylene copolymer (MA‐g‐PP) was used as a compatibilizer to increase the compatibility between the PP matrix, clay, and banana fiber to enhance exfoliation of organoclay and dispersion of fibers into the polymer matrix. Variation in mechanical, thermal, and physico‐mechanical properties with the addition of banana fiber into the PP nanocomposites was investigated. It was observed that 3 wt% of nanoclay and 5 wt% of MA‐g‐PP within PP matrix resulted in an increase in tensile and flexural strength by 41.3% and 45.6% as compared with virgin PP. Further, incorporation of 30 wt% banana fiber in PP nanocomposites system increases the tensile and flexural strength to the tune of 27.1% and 15.8%, respectively. The morphology of fiber reinforced PP nanocomposites has been examined by using scanning electron microscopy and transmission electron microscopy. Significant enhancement in the thermal stability of nanocomposites was also observed due to the presence of nanoclay under thermogravimetric analysis. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), conforming the strong interaction between nanoclay/banana fiberand MA‐g‐PP in the fiber‐reinforced nanocomposites systems. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

4.
The tensile and impact properties of amine‐cured diglycidyl ether of bisphenol A based nanocomposites reinforced by organomontmorillonite clay nanoplatelets are reported. The sonication processing scheme involved the sonication of the constituent materials in a solvent followed by solvent extraction to generate nanocomposites with homogeneous dispersions of the organoclay nanoplatelets. The microstructure of the clay nanoplatelets in the nanocomposites was observed with transmission electron microscopy, and the clay nanoplatelets were well dispersed and were intercalated and exfoliated. The tensile modulus of epoxy at room temperature, which was above the glass‐transition temperature of the nanocomposites, increased approximately 50% with the addition of 10 wt % (6.0 vol %) clay nanoplatelets. The reinforcing effect of the organoclay nanoplatelets was examined with respect to the Tandon–Weng and Halpin–Tsai models. The tensile strength was improved only when 2.5 wt % clay nanoplatelets were added. The Izod impact strength decreased with increasing clay content. The failure surfaces of the nanocomposites were observed with environmental scanning electron microscopy and confocal laser scanning microscopy. The roughness of the failure surface was correlated with the tensile strength. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 281–287, 2005  相似文献   

5.
PP/organoclay nanocomposites were prepared using different processing aids (EMCA and PPG), and their effects on the thermal and mechanical properties were evaluated by WAXD, TEM, SEM, DSC, and mechanical tests. This study helps to clarify the effects of processing aids on the organoclay surface and on the intercalation and exfoliation processes. Nanocomposites with elongated intercalated and partially exfoliated structures were obtained, mainly when C‐15A was used. The results for the mechanical properties showed that the processing aids increased the impact strength significantly (up to three times that of neat PP) but reduced the flexural modulus of PP nanocomposites. PPG, which is polar promoted wetting MMT surface, thus increasing its interlayer distance, mainly for PP/C‐20A nanocomposites. However, it reduced the interfacial adhesion between the clay and the matrix. Nanocomposites impact strength was improved, especially when the C‐15A organoclay was used, while were achieved better results with the C‐20A organoclay when EMCA was used. The larger the amount of processing aid added, the higher the impact strength, but the lower the flexural modulus of the nanocomposites. PPG caused debonding of the clay particles and increased the number of microvoids, generating more mechanisms to aid in the energy dissipation of the systems. EMCA promoted debonding of clay particles with the formation of fibrils, indicating stronger interactions between the clay and matrix. A slight nucleation effect for PP crystallization was observed, mainly when EMCA was used. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Bicyclo[2.2.2]oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride (BCDA)‐based polyimide–clay nanocomposites were prepared from their precursor, namely polyamic acid, by a solution‐casting method. The organoclay was prepared by treating sodium montmorillonite (Kunipia F) clay with dodecyltrimethylammonium bromide at 80 °C. Polyamic acid solutions containing various weight percentages of organoclay were prepared from 4,4′‐(4,4′‐isopropylidenediphenyl‐1,1′‐diyldioxy)‐dianiline and BCDA in N‐methyl‐2‐pyrrolidone containing dispersed particles of organoclay at 20 °C. These solutions were cast on a glass plate using a Doctor's blade and then heated subsequently to obtain nanocomposite films. The nanocomposites were characterized using Fourier transform infrared spectroscopy, differential scanning calorimetry, thermal mechanical analysis, dynamic mechanical analysis, polarizing microscopy, scanning electron microscopy, transmission electron microscopy, wide‐angle X‐ray diffraction (WAXD) and thermogravimetric analysis. The glass transition temperature of the nanocomposites was found to be higher than that of pristine polymer. The coefficient of thermal expansion of the nanocomposites decreased with increasing organoclay content. WAXD studies indicated that the extent of silicate layer separation in the nanocomposite films depended upon the organoclay content. Tensile strength and modulus of the nanocomposite containing 1% organoclay were significantly higher when compared to pristine polymer and other nanocomposites. The thermal stability of the nanocomposites was found to be higher than that of pristine polymer in air and nitrogen atmosphere. Copyright © 2007 Society of Chemical Industry  相似文献   

7.
Understanding the complex mechanism of dispersion and intercalation of the clay tactoids can allow us to control the final morphology, homogeneity, and the macroscopic properties of clay nanocomposites. The objective of this work is a multiscale study of the dispersion state of PP/organoclay and PP‐g‐MA/organoclay composite. The microscopic investigation, WAXS diffractograms, rheological analysis, and mechanical properties were used to characterize the dispersion of organoclay in PP and PP‐g‐MA matrices during melt blending in two different shear rates. The morphological results show a system of aggregating intercalated clay particles which disperse by increasing mixing time with a strain‐controlled process and a very quick intercalation process in early mixing times for PP‐g‐MA/organoclay nanocomposite, while PP/organoclay samples only form microcomposites. The relative network modulus of these intercalated particles as a function of mixing time was obtained; and the tensile modulus of nanocomposite samples were compared with Halpin‐Tsai model prediction. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

8.
A different series of polymer–clay hybrid materials have been prepared by modification of the clay with different vinyl monomers, followed by polymerization of different ratios of vinyl monomers–clay with the monomers, such as methyl methacrylate, hydroxyethyl methacrylate, and styrene‐maleic anhydride. The materials were investigated by IR, which confirmed the intercalation of vinyl‐cation within the clay interlayers, and by TGA, which illustrated that phosphonium cation has high thermal stability than ammonium cation. Swelling studies of these materials in different organic solvents showed that the swelling degree increases as clay ratio decrease, and also showed higher swelling relative to vinyl–clay. X‐ray diffraction illustrated that the nanocomposites were exfoliated up to a 25 wt % content of organoclay relative to the amount of polymer. SEM and TEM examined the micrograph, which showed a good dispersion of the polymers into clay galleries, and formation of nanosize particles ranged 150–300 Å. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
Direct melt compounding was used to prepare nanocomposites of organophilic montmorillonite (o‐mmt) clay dispersed in maleated polypropylenes (PPgMA) as well as nanocomposites of organoclay and polypropylene (PP) modified with various grades of PPgMA compatibilizers. The thermal effect on the rheology and melt compounding was first investigated with a plasticorder. The shear viscosities and the melt flow indices (MFI) of the PPgMA compatibilizers were sensitive to the blending temperature, which had to be varied with the compatibilizer grade to achieve desirable level of torque for extensive exfoliation of organoclay in the plasticorder. However, for low molecular weight oligomer, the clay dispersion was poor because of low shear viscosity and thermal instability. Next, the PPgMA‐modified PP/organoclay nanocomposites were prepared on a corotating twin‐screw extruder. The nanoscale dimensions of the dispersed clay platelets led to significantly increased linear viscoelastic properties, which were qualitatively correlated with the state of exfoliation in the nanocomposites. The relative viscosity (relative to the silicate‐free matrix) curves revealed a systematic trend with the extent of clay exfoliation. Furthermore, the degree of clay dispersion was found to increase with the loading of compatibilizers; however, high loading of compatibilizer compromised the final moduli of the nanocomposites. POLYM. ENG. SCI. 46:289–302, 2006. © 2006 Society of Plastics Engineers  相似文献   

10.
Poly(methyl methacrylate) (PMMA)/organoclay nanocomposites prepared by melt‐compounding using a co‐rotating twin‐screw extruder were intercalated nanocomposites. Commercially available PMMA resins of various molecular weights were used for comparison. The results showed an optimum compounding temperature for maximum intercalation with balanced shear and diffusion. Higher operating temperature reduced the shear mixing effect, and might have induced early degradation of the organoclay. Lower operating temperature, in contrast, reduced the mobility of the polymer molecules, which not only hampered the intercalation attempts, but also generated high torque in the extrusion. The mechanical behavior of the nanocomposites was studied. The tensile modulus, storage modulus and glass transition temperature of the nanocomposites increased with increasing clay content; however, an associated decrease in strength and strain at break was also observed. The notched impact strength also showed a slight decrease with clay content. Nanocomposites based on the lower molecular weight PMMA yielded more significant improvement in mechanical and thermal properties at the same clay content. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
Nanocomposite polyurethane (PU)–organoclay materials have been synthesized via in‐situ polymerization. The organoclay is first prepared by intercalation of tyramine into montmorillonite (MMT)‐clay through ion exchange process. The syntheses of polyurethane–organoclay hybrid films containing different ratios of clay were carried out by swelling the organoclay into diol and diamine followed by addition of diisocyanate and then cured. The nanocomposites with dispersed and exfoliated structure of MMT were obtained as evidenced by X‐ray diffraction and scanning electron microscope. X‐ray diffraction showed that there is no peak corresponding to d001 spacing in organoclay with the ratios up to 20 wt%. SEM images confirmed the dispersion of nanometer silicate layers in the polyurethane matrix. Also, it was found that the presence of organoclay leads to improvement in the mechanical properties. The tensile strength was increased with increasing the organoclay contents to 20 wt% by 221% in comparision to the PU with 0% organoclay. POLYM. COMPOS. 28:108–115, 2007. © 2007 Society of Plastics Engineers  相似文献   

12.
Polyethylene‐based ternary nanocomposites were prepared with different clay structures, obtained by the modification of purified Resadiye bentonite as the reinforcement, a random terpolymer of ethylene, butyl acrylate, and maleic anhydride with the trade name Lotader3210 as the compatibilizer, and linear low‐density polyethylene (LLDPE) as the polymer matrix in an intensive batch mixer. The quaternary ammonium/phosphonium salts used for the modification of bentonite were dimethyldioctadecyl ammonium (DMDA) chloride (Cl), tetrakisdecyl ammonium (TKA) bromide (Br), and tributylhexadecyl phosphonium (TBHP) Br. The effects of the physical properties and structure of the organoclay on the clay dispersion were studied at different clay contents (2 and 5 wt %) and at a compatibilizer/organoclay ratio of 2.5. The extent of organoclay dispersion was determined by X‐ray diffraction (XRD) and was verified by transmission electron microscopy (TEM), mechanical testing, and rheological analysis. XRD analysis showed that the nanocomposite with the organoclay DMDA contained intercalated silicate layers, as also verified by TEM. The TEM analysis of the nanocomposites with TBHP exhibited intercalated/partially exfoliated clay dispersion. TKA, with a crowded alkyl environment, sheltered and hindered the intercalation of polymer chains through the silicate layers. In comparison to pure LLDPE, nanocomposites with a 33–41% higher Young's modulus, 16–9% higher tensile strength, and 75–144% higher elongation at break were produced with DMDA and TBHP, respectively (at 5 wt % organoclay). The storage modulus increased by 807–1393%, and the dynamic viscosity increased by 196–339% with respect to pure LLDPE at low frequencies for the samples with DMDA and TBHP (at 5 wt % organoclay). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Carbon nanotube (CNT)/aramid fiber epoxy composites were produced using a new manufacturing method proposed in this study. The rheological and morphological experiments of the CNT/PEO nanocomposites indicates that the PEO nanocomposites have a good dispersion state of the CNTs. The flexural mechanical properties of the aramid fiber/CNT epoxy composites were measured. The CNTs dispersed in the epoxy resin between the aramid fibers were observed using field emission scanning electron miscroscope (FESEM). It was found that the flexural properties of the multiscale fiber‐reinforced composites were higher than those of aramid fiber/epoxy composites. POLYM. COMPOS., 28:458–461, 2007. © 2007 Society of Plastics Engineers.  相似文献   

14.
A modified clay was used to prepare poly(L ‐lactic acid)/clay nanocomposite dispersions. X‐ray diffraction and transmission electron microscopy experiments revealed that poly(L ‐lactic acid) was able to intercalate the clay galleries. IR spectra of the poly(L ‐lactic acid)/clay nanocomposites showed the presence of interactions between the exfoliated clay platelets and the poly(L ‐lactic acid). Thermogravimetric analysis and differential scanning calorimetry were performed to study the thermal behavior of the prepared composites. The properties of the poly(L ‐lactic acid)/clay nanocomposites were also examined as functions of the organoclay content. The exfoliated organoclay layers acted as nucleating agents, and as the organoclay content increased, the crystallization temperature increased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
Poly(styrene‐co‐butadiene) rubber (SBR) and polybutadiene rubber (BR)/clay nanocomposites have been prepared. The effects of the incorporation of inorganically and organically modified clays on the vulcanization reactions of SBR and BR were analysed by rheometry and differential scanning calorimetry. A reduction in scorch time (ts1) and optimum time (t95) was observed for both the rubbers when organoclay was added and this was attributed to the amine groups of the organic modifier. However, ts1 and t95 were further increased as the clay content was increased. A reduction in torque value was obtained for the organoclay nanocomposites, indicating a lower number of crosslinks formed. The organoclays favoured the vulcanization process although the vulcanizing effect was reduced with increasing clay content. The tensile strength and elongation of SBR were improved significantly with organoclay. The improvement of the tensile properties of BR with organoclay was less noticeable than inorganic‐modified clay. Nevertheless, these mechanical properties were enhanced with addition of clay. The mechanical properties of the nanocomposites were dependent on filler size and dispersion, and also compatibility between fillers and the rubber matrix. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Nanocomposites containing a thermoplastic blend and organophilic layered clay (organoclay) were produced by melt compounding. The blend composition was kept constant [polyamide 6 (PA6) 70 wt % + polypropylene (PP) 30 wt %], whereas the organoclay content was varied between 0 and 10 wt %. The mechanical properties of the nanocomposites were determined on injection‐molded specimens in both tensile and flexural loading. Highest strength values were observed at an organoclay content of 4 wt % for the blends. The flexural strength was superior to the tensile one, which was traced to the effect of the molding‐induced skin‐core structure. Increasing organoclay amount resulted in severe material embrittlement reflected in a drop of both strength and strain values. The morphology of the nanocomposites was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersion X‐ray analysis (EDX), and X‐ray diffraction (XRD). It was established that the organoclay is well dispersed (exfoliated) and preferentially embedded in the PA6 phase. Further, the exfoliation degree of the organoclay decreased with increasing organoclay content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 175–189, 2004  相似文献   

17.
A novel organomodified montmorillonite prepared by solid‐state method and its nanocomposites with natural rubber were studied. The nanocomposites were prepared by traditional rubber mixing and vulcanizing process. The properties of solid‐state organomodified montmorillonite were investigated by Fourier‐transform infrared spectroscopy (FITR) and thermogravimetric analysis (TGA). The dispersion of the layered silicate in rubber matrix was characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the nanocomposites consisting of solid‐state organomodified montmorillonite and natural rubber are obtained. The solid‐state organomodified montmorillonite can not only accelerate the curing process, but also improve the mechanical and aging resistance properties of NR. The properties improvement caused by the fillers are attributed to partial intercalation of the organophilic clay by NR macromolecules. In addition, the dynamic mechanical analysis (DMA) results showed a decrease of tanδmax and increase of Tg when the organoclay is added to the rubber matrix, which is due to the confinement of the macromolecular segments into the organoclay nanolayers and the strong interaction between the filler and rubber matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
New type of nanocomposites containing various proportions of montmorillonite in aromatic polyamide was prepared via solution intercalation method. Aramid chains were synthesized by reacting 4,4′‐oxydianiline with isophthaloyl chloride in N,N′‐dimethyl acetamide. Dodecylamine was used as swelling agent to change the hydrophilic nature of montmorillonite into organophilic. Appropriate amounts of organoclay were mixed in the polymer solution using high‐speed mixer for complete dispersion of the clay. Thin films cast from these materials after evaporating the solvent were characterized by XRD, TEM, mechanical, thermal, and water absorption measurements. The structure and morphology of the nanocomposites determined by XRD and TEM revealed the formation of exfoliated and intercalated clay platelets in the aramid matrix. Mechanical data indicated improvement in the tensile strength and modulus of the nanocomposites with clay loading up to 6 wt%. The glass transition temperature increased up to 12 wt% clay content and thermal stability amplified with increasing clay loading. The water absorption reduced gradually as a function of organoclay and approached to zero with 20 wt% organoclay in the aramid. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

19.
The influence of styrene as a reactive diluent on the morphology of vinylester resin‐clay hybrids has been studied. Two mixtures of diglycidylether of bisphenol‐A diacrylate as vinyl ester resin and styrene (20 and 40%) were prepared. Various weight ratios of styryl‐functional organoclay were added to vinylester resin/styrene mixture, followed by polymerization of the mixture up to 160°C. The morphology of the hybrids studied by X‐ray diffraction and Scanning Electron Microscope revealed that the dispersion of organoclay increased with the increase of styrene content. The inclusion of styrene to the system gave ordered intercalated nanocomposites. The surface hardness of the hybrid films decreased with adding a higher content of styrene. Thermogravimetric analysis indicates that clay is effective in promoting char‐forming reaction of vinylester resin/styrene clay nanocomposites. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

20.
Tough nanocomposites based on polyamide 12 (PA12) can be obtained by the addition of a maleated rubber to a highly dispersed PA12‐clay nanocomposite by melt processing. The nanostructure behavior was evaluated by X‐ray diffraction and transmission electron microscopy. The results showed that the organoclay was highly dispersed and mostly located in the PA12 matrix due to the larger affinity between the polyamide and the clay, but some of the organoclay was also present in the polymer/polymer interface. The presence of organoclay slightly increased the dispersed particle size, indicating decreased compatibilization. This was attributed to a partial shielding of maleic anhydride compatibilizer by surfactant. The addition of the elastomer considerably improved the toughness of the PA12‐based nanocomposites, maintaining its stiffness; i.e., the nanocomposites with 25% rubber content showed an increase of 25‐fold of notched impact strength of the PA12 matrix, meanwhile ductility and stiffness remained constant. This allowed us to obtain toughened PA12 PNs throughout a large range of strain rate and a modulus similar to that of the unmodified PA12. The position of the brittle/tough transition in terms of rubber content, determined by the standard notched Izod test (25% mSEBS) is basically the same as that determined by the essential work of fracture procedure. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号