首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a commercially available nano‐sized silica (SiO2) was surface‐modified via esterification with oleic acid (OA), a relatively inexpensive and hydrophobic modifier. The surface‐modified silica (SiO2‐OA) nanoparticles were used to disperse in the poly(amic acid) solutions of a commercial polyimide (PI), used for two‐layer film, and thermally imidized to form a series of PI/silica nanocomposites. The effects of the addition of SiO2‐OA nanoparticles on the properties of the as‐prepared PI/silica nanocomposites were studied. The results indicated that the as‐prepared PI/silica nanocomposites exhibited improvements in the dynamic mechanical property, thermal stability, water resistance, and thermal expansion. POLYM. COMPOS. 28:575–581, 2007. © 2007 Society of Plastics Engineers  相似文献   

2.
《Polymer Composites》2017,38(4):774-781
In this article, a series of new silica/polyimide (SiO2/PI) nanocomposite films with high dielectric constant (>4.0), low dielectric loss (<0.0325), high breakdown strength (288.8 kV mm−1), and high volume resistivity (2.498 × 1014 Ω m) were prepared by the hydrolysis of tetraethyl orthosilicate in water‐soluble poly(amic acid) ammonium salt (PAAS). The chemical structure of nanocomposite films compared with the traditional pure PI was confirmed by Fourier transform infrared spectroscopy and X‐ray diffraction patterns. The results indicated that both the PAAS and the polyamide acid (PAA) material were effectively converted into the corresponding PI material through the thermal imidization and the amorphous SiO2 was embedded in the nanocomposite films without structural changes. Thermal stability of the nanocomposite films was increased though mechanical property was generally decreased with increasing the mass fraction of SiO2. All the nanocomposite films exhibited an almost single‐step thermal decomposition behavior and the average decomposition temperature was about 615°C. It was concluded that the effective dispersion of SiO2 particles in PI matrix vigorously improved the comprehensive performance of the SiO2/PI nanocomposite films and expanded their applications in the electronic and environment‐friendly industries. POLYM. COMPOS., 38:774–781, 2017. © 2015 Society of Plastics Engineers  相似文献   

3.
Dielectric and conduction properties of polyimide/silica nano‐hybrid films were investigated with the silica content and the testing frequency, using a small electrode system. The hybrid films were prepared through sol‐gel process and thermal imidization, by using pyromellitic dianhydride and 4,4′‐oxydianiline as polyimide precursors, and tetraethoxysilane and methyltriethoxysilane as silica precursors. The dielectric coefficient of PI/SiO2 films was monotonically increased with increasing silica content, and decreased with increasing testing frequency. The dielectric loss of PI/SiO2 films had no obvious changes with increasing silica content, but monotonically increased with increasing testing frequency. These can be contributed to the different quantity and migration chunnels of current carriers, which were mainly influenced by a few of complicated factors. There were remarkable differences between conduction property of PI/TEOS‐SiO2 films and PI/MTEOS‐SiO2 films because of the different size and dispersion status of silica particles in the polyimide matrix. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

4.
A new type of polyimide/silica (PI/SiO2) hybrid composite films was prepared by blending polymer‐modified colloidal silica with the semiflexible polyimide. Polyimide was solution‐imidized at higher temperature than the glass transition temperature (Tg) using 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA) and 4,4′‐diaminodiphenyl ether (ODA). The morphological observation on the prepared hybrid films by scanning electron microscopy (SEM) pointed to the existence of miscible organic–inorganic phase, which resulted in improved mechanical properties compared with pure PI. The incorporation of the silica structures in the PI matrix also increased both Tg and thermal stability of the resulting films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2053–2061, 2006  相似文献   

5.
In this article, polyimide (PI)/silica nanocomposite nanofoams were prepared by solid‐state foaming using supercritical CO2 as foaming agent. To control the cell size and morphology of the PI/silica foam, the silica nanoparticles as nucleating agent were in situ formation from TEOS via sol‐gel process, which make the silica nanoparticles homogeneously dispersed in PI matrix. The resulting PI/silica nanocomposite nanofoams were characterized by scanning electron microscopy (SEM), the image analysis system attached to the SEM and dielectric properties measurements. In PI/silica nanocomposite nanofoams, one type of novel morphology was shown that each cell contained one silica nanoparticle and many smaller holes about 20–50 nm uniformly located in the cell wall. This special structure could visually prove that the nucleation sites during foaming were formed on the surface of nucleating agents. Compared with those of neat PI foam, the cell size of PI/silica nanocomposite nanofoams was smaller and its distribution was narrower. The dielectric constant of PI/silica nanocomposite nanofoams was decreased because of the incorporation of the air voids into the PI/silica nanofoams. While the porosity of PI/silica nanocomposite nanofoam film was 0.45, the dielectric constant of the film (at 1 MHz) was reduced from 3.8 to about 2.6. Furthermore, the dielectric constant of PI/silica nanofoam films remained stable across the frequency range of 1×102~1×107 HZ. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42355.  相似文献   

6.
Polyimide/silica (PI/SiO2) nanocomposite films with 10 wt % of silica content were prepared by sol–gel process under the conditions with and without additional water. The presence of additional water has great effect on the silica particle size and thus on the properties of the prepared PI/SiO2 films. The results indicated that with additional water, the silica particles formed before the imidization of poly(amic acid) (PAA) and aggregated with the increasing of temperature and degree of the proceeding imidization process. For the nonaqueous process, the hydrolysis condensation reaction of tetraethoxysilane (TEOS) did not occur until the imidization of PAA took place, and no silica particles were found in the unimidized PAA films. The hydrolysis–condensation reaction of TEOS was initiated simultaneously by the trace water released from the imidization reaction, the self‐catalysis mechanism of the approach provide a means of achieving uniformly dispersed silica particles formed in the PI matrix with particle size in the range of 30–70 nm. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1579–1586, 2007  相似文献   

7.
In this work, poly(acrylamide‐co‐acrylic acid)/silica [poly(AM‐co‐AA)/SiO2] microspheres were prepared by inverse phase suspension polymerization in the presence of γ‐3‐(trimethoxysilyl) propyl methacrylate (or 3‐methacryloxypropyltrimethoxysilane) modified SiO2. The effects of SiO2 nanoparticles on tuning morphology and properties of the nanocomposite microspheres were studied. Plugging ability and oil displacement performance were also systematically investigated by single‐ and double‐tube sand pack models. The results showed that SiO2 nanoparticles can effectively adjust surface smoothness, swelling behavior, and thermal stability of the nanocomposite microspheres. Compared with pure copolymer microspheres, these nanocomposite microspheres also displayed better salt tolerance and shear resistance. Such multifunctional nanocomposite microspheres can provide effective plugging in the high‐permeability channels and can also achieve deep profile control. The highest plugging rate can be 86.11% and the oil recovery for low‐permeability tube was enhanced by 19.69%. This research will provide a candidate material for the further enhanced oil recovery (EOR) research and supply the theoretical support for profile control system in field application. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45502.  相似文献   

8.
The polymerization of 1‐vinyl‐2‐pyrrolidone (VP) mechanochemically initiated by grinding silica was investigated in a wet stirred media mill. The polymerization itself proceeds from the silica grinding without any additional initiator. We have found that the amount of grafted polymer increases with an increase in total ground silica surface. The suspension of polymer‐modified silica nanoparticles showed high colloidal stability in water because of the appearance of grafted hydrophilic PVP on the surface during the reactive grinding. Because the nanoparticles SiO2graft‐PVP are biocompatible, the developed polymer nanocomposite material can be of particular interest for the performance of membranes and for the fabrication of biocompatible hydrogels with enhanced mechanical properties and porosity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3708–3714, 2007  相似文献   

9.
SiO2/Poly(3‐aminophenylboronic acid) (PAPBA) composites were synthesized under different experimental conditions, using ultrasonic irradiation method. Polymerization was carried out in the presence of sodium fluoride and D ‐fructose to anchor 3‐aminophenylboronic acid groups on to SiO2 surface. The SiO2/PAPBA nanocomposite prepared by NaF and D ‐fructose in the polymerization medium was found to show different morphology, electrical properties, thermal behavior and structural characterization in comparison to the nanocomposites prepared under other conditions. Ultrasonic irradiation minimizes the aggregation of nanosilica and promotes anchoring of PAPBA units over SiO2 surface. The morphology of PAPBA/ SiO2 nanocomposite was investigated by using transmission electron microscopy, UV‐visible spectroscopy; thermogravimetric analysis, Fourier transform infrared spectroscopy, and X‐ray diffraction analysis were used for characterization. Transmission electron microscope of the nanocomposites observation shows that SiO2/PAPBA composite, prepared with D ‐fructose and NaF under ultrasonication has a core–shell morphology. The thermal and crystalline properties of core‐shell SiO2/PAPBA nanocomposite was prepared via ultrasonication method is different from the SiO2/PAPBA nanocomposite prepared via conventional stirring method, in which SiO2 nanoparticles are submerged in PAPBA. Conductivity of the composite prepared via ultrasonication shows around 0.2 S/cm. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2743–2750, 2007  相似文献   

10.
Poly(vinyl chloride) (PVC)/SiO2 nanocomposites were prepared via melt mixture using a twin‐screw mixing method. To improve the dispersion degree of the nanoparticles and endow the compatibility between polymeric matrix and nanosilica, SiO2 surface was grafted with polymethyl methacrylate (PMMA). The interfacial adhesion was enhanced with filling the resulting PMMA‐grafted‐SiO2 hybrid nanoparticles characterized by scanning electron microscopy. Both storage modulus and glass transition temperature of prepared nanocomposites measured by dynamic mechanical thermal analysis were increased compared with untreated nanosilica‐treated PVC composite. A much more efficient transfer of stresses was permitted from the polymer matrix to the hybrid silica nanoparticles. The filling of the hybrid nanoparticles caused the improved mechanical properties (tensile strength, notched impact strength, and rigidity) when the filler content was not more than 3 wt %. Permeability rates of O2 and H2O through films of PMMA‐grafted‐SiO2/PVC were also measured. Lower rates were observed when compared with that of neat PVC. This was attributed to the more tortuous path which must be covered by the gas molecules, since SiO2 nanoparticles are considered impenetrable by gas molecules. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Polyimide/silica (PI/SiO2) hybrid nanocomposites were prepared by the sol‐gel process directly from a soluble polyimide. This soluble PI was synthesized from a diamine with a pendant phenyl hydroxyl group, 4,4′‐diamino‐4″‐hydroxy triphenyl methane (DHTM) and a dianhydride, pyromellitic dianhydride (PMDA), followed by cyclodehydration. Three ways of preparing PI/SiO2 hybrid nanocomposites were investigated in this study. Two of them used the coupling agent 3‐glycidyloxy propyl trimethoxysilane (GPTMOS) to enhance the compatibility between PI and silica. The coupling agent can react with the PI to form covalent bonds. The structures of the modified hybrid nanocomposites were identified with a FTIR, whereas the size of the silica in polyimides was characterized with a scanning electron microscope. The size of silica particles in the modified system was <100 nm. The covalently bonded PI/SiO2 hybrid nanocomposites prepared by the novel third approach exhibited good transparency when the silica content was <15%. Moreover, their thermal and mechanical properties exhibited a significant improvement. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 382–393, 2004  相似文献   

12.
A poly(vinyl alcohol) (PVA)/silica (SiO2) nanocomposite was prepared with a novel self‐assembled monolayer technique, and its morphology and thermal properties were studied with different material characterization instruments. The treated SiO2 nanoparticles were dispersed in the PVA matrix homogeneously, and the thermal properties of the nanocomposite were markedly improved in comparison with those of pure PVA. Under the same isothermal heating conditions, the decomposition of the nanocomposite was delayed significantly in comparison with that of PVA. The thermal degradation of the nanocomposite was a two‐step reaction, including the degradation of the side chain and main chain. The products of side‐chain degradation were mainly carboxylic acid, whereas main‐chain degradation primarily produced carbon dioxide and low‐molecular‐weight conjugated polyene. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1436–1442, 2005  相似文献   

13.
Polyimide–silica (PI–SiO2) hybrids with a nanostructure was obtained using the nonaqueous sol–gel process by polycondensation of phenyltriethoxysilane in a polyamic acid solution. Self‐catalyzed hydrolysis of phenyl‐substituted akoxysilane and modification on the polyimide structure are applied and result in highly compatible PI–SiO2 hybrids. Transparent PI–SiO2 with a high silica content of about 45% was thus obtained. The prepared PI–SiO2 films were characterized by infrared spectrometry, 29Si‐NMR, thermogravimetric analysis, differential scanning calorimetry, and scanning electron microscopy. These characterizations showed the silica influence on the properties of the hybrid. The thermal expansion coefficient of the PI–SiO2 and the temperature correlation were also established for probing the potential for application. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1609–1618, 2000  相似文献   

14.
BACKGROUND: Polyacrylate/silica nanocomposite latexes have been fabricated using blending methods with silica nanopowder, in situ polymerization with surface‐functionalized silica nanoparticles or sol–gel processes with silica precursors. But these approaches have the disadvantages of limited silica load, poor emulsion stability or poor film‐forming ability. RESULTS: In this work, poly[styrene‐co‐(butyl acrylate)‐co‐(acrylic acid)] [P(St‐BA‐AA)]/silica nanocomposite latexes and their dried films were prepared by adding an acidic silica sol to the emulsion polymerization stage. Morphological and rheological characterization shows that the silica nanoparticles are not encapsulated within polymer latex particles, but interact partially with polymer latex particles via hydrogen bonds between the silanol groups and the ? COOH groups at the surface of the polymer particles. The dried nanocomposite films have a better UV‐blocking ability than the pure polymer film, and retain their transparency even with a silica content up to 9.1 wt%. More interestingly, the hardness of the nanocomposite films increases markedly with increasing silica content, and the toughness of the films is not reduced at silica contents up to 33.3 wt%. An unexpected improvement of the solvent resistance of the nanocomposite films is also observed. CONCLUSION: Highly stable P(St‐BA‐AA)/silica nanocomposite latexes can be prepared with a wide range of silica content using an acidic silica sol. The dried nanocomposite films of these latexes exhibit simultaneous improvement of hardness and toughness even at high silica load, and enhanced solvent resistance, presumably resulting from hydrogen bond interactions between polymer chains and silica particles as well as silica aggregate/particle networks. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
Crystalline nanoparticles of barium titanate (BT) are incorporated into polyimide (PI) to fabricate highly refractive, anti‐UV‐degradable nanocomposite films with high permittivity and thermal stability. For homogeneous incorporation of BT nanoparticles into the PI matrix, the BT nanoparticles are surface modified by phthalimide with the aid of a silane coupling agent as a scaffold. The PI nanocomposites are prepared by in situ polymerization in which a diphthalic anhydride and a diamine are used to form the PI matrix in the presence of the surface‐modified nanoparticles. The refractive index of the transparent nanocomposite films reaches 1.85 at a nanoparticle content of 59 vol% with a high dielectric constant of ε = 37 and thermal stability up to 460 °C. Copyright © 2012 Society of Chemical Industry  相似文献   

16.
The incorporation of inorganic nanoparticles into polymers have gained significant attention to improving functional properties. The ultimate nanocomposite behaviors are influenced by many parameters, such as microstructural distribution that are produced during the treatment process. Herein, a hybrid material integrating a modified network into a polyimide PI matrix was produced via the sol–gel method by the reaction of pyromellitic dianhydride, 4, 4-oxydianaline, and 1, 5-diaminonaphthalene to synthesize copolyimides nanocomposite. The modified polyimide and unmodified polyimide silica (SiO2) nanoparticles were incorporated in the polyimide matrix to have polyimide silica nanocomposite. In modified silica nanoparticles, 3-aminopropyltriethosilane was introduced to have better compatibility among inorganic–organic hybrid with similar chemical contact due to their flexible alkyl group. The surface morphology or structure of silica and polyimide was affirmed by scanning electron microscopy, Fourier transforms infrared spectroscopy confirmed the synthesis of pure polyimide, unmodified polyimide, and modified polyimide silica via presence and absence of certain peaks. Thermogravimetric analysis (TGA) results showed high thermal stability of nanocomposites as silica content increases. In contrast to unmodified silica, the modified silica provides more thermal stability to the nanocomposites. Dynamic mechanical analysis was used to investigate the tensile stress of pure polyimide, unmodified, and modified silica nanocomposites. Thermal stability, storage modulus, and moisture absorption of these hybrid materials were improved with silica nanoparticles. The TG mass spectrum confirms the successful synthesis of modified silica networks. The substituted silica nanoparticles show higher mechanical toughness and storage in modified compared to unmodified silica nanocomposite, which exhibits stronger binding attraction between silica nanoparticles and polyimide matrix.  相似文献   

17.
Poly(methy methacrylate) (PMMA)‐SiO2 nanoparticles were prepared via differential microemulsion polymerization. The effects of silica loading, surfactant concentration, and initiator concentration on monomer conversion, particle size, particle size distribution, grafting efficiency, and silica encapsulation efficiency were investigated. A high monomer conversion of 99.9% and PMMA‐SiO2 nanoparticles with a size range of 30 to 50 nm were obtained at a low surfactant concentration of 5.34 wt% based on monomer. PMMA‐SiO2 nanoparticles showed spherical particles with a core‐shell morphology by TEM micrographs. A nanocomposite membrane from natural rubber (NR) and PMMA‐SiO2 emulsion was studied for mechanical and thermal properties and pervaporation of water‐ethanol mixtures. PMMA‐SiO2 nanoparticles which were uniformly dispersed in NR matrix, significantly enhanced mechanical properties and showed high water selectivity in permeate flux. Thus, the NR/PMMA‐SiO2 hybrid membranes have great potential for pervaporation process in membrane applications. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

18.
SiO2 nanoparticles of a quantum size (15 nm or less) were prepared via sol–gel method using tetraethylorthosilicate as a precursor. SiO2 nanoparticles were characterized by X‐ray diffraction (XRD) and field‐emission scanning electron microscopy (FESEM) analyses. Polyethersulfone/silica (PES/SiO2) crystal structure nanocomposite was prepared by in situ polymerization using silica nanoparticles as reinforcement filler. The polymerization reaction was done at 160°C in paraffin bath in the presence of diphenolic monomers. XRD and FESEM analyses were used to study the morphology of the synthesized nanocomposite. The purity and thermal property of the PES/SiO2 nanocomposite were studied by energy dispersion of X‐ray analysis and differential scanning calorimetry, respectively. The effect of silica particles on the hydrophilicity of PES/SiO2 nanocomposite was also investigated. It was showed that the PES/SiO2 nanocomposite had a higher swelling degree when compared with the pure PES. The synthesized PES/SiO2 powder was used to remove Cu(II) ions from its aqueous solution. The effect of experimental conditions such as pH, shaking time, and sorbent mass on adsorption capacity of PES/SiO2 nanocomposite were investigated. It was found that incorporation of a low amount of silica (2 wt%) into the polymer matrix caused the increase of the Cu(II) ions adsorption capacity of PES. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

19.
Poly(lactic acid) (PLA)/SiO2 nanocomposites were prepared via melt mixing with a Haake mixing method. To improve the dispersion of nanoparticles and endow compatibility between the polymer matrix and nanosilica, SiO2 was surface‐modified with oleic acid (OA). The interfacial adhesion of the PLA nanocomposites was characterized by field‐emission scanning electron microscopy. The storage modulus and glass‐transition temperature values of the prepared nanocomposites were measured by dynamic mechanical thermal analysis. The linear and nonlinear dynamic rheological properties of the PLA nanocomposites were measured with a parallel‐plate rheometer. The effects of the filling content on the dispersability of the OA–SiO2 nanoparticles in the PLA matrix, the interface adhesion, the thermomechanical properties, the rheological properties, and the mechanical properties were investigated. Moreover, the proper representation of the oscillatory viscometry results provided an alternative sensitive method to detect whether aggregation formed in the polymeric nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
A new nanofiller containing layered organo‐modified montmorillonite (oMMT) and spherical silica (SiO2) was prepared by an in situ deposition method and coupling agent modification. Fourier transform infrared spectrometry, X‐ray diffraction and transmission electron microscopy show that there are interactions between oMMT and SiO2, and the spherical SiO2 particles are self‐assembled on the edge of oMMT layers, forming a novel layered–spherical nanostructure. An epoxy resin (EP)/oMMT–SiO2 nanocomposite was obtained by adding oMMT–SiO2 to EP matrix. Morphologies and mechanical and thermal properties of the new ternary nanocomposite were investigated. For purposes of comparison, the corresponding binary nanocomposites, i.e., EP modified with either oMMT or SiO2, were also tested. The results for the mechanical properties show that oMMT obviously improves the strength of EP, and SiO2 enhances the toughness of EP, but oMMT–SiO2 exhibits a synergistic effect on toughening and reinforcing of EP. The toughening and reinforcing mechanism is explained by scanning electron microscopy. In addition, the thermal resistance of EP/oMMT–SiO2 is better than that of EP/SiO2, but it is worse than that of EP/oMMT. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号