首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A conducting nanocomposite of crosslinked poly‐N‐vinylcarbazole (CLPNVC) with nanodimensional acetylene black (AB) was prepared by oxidative crosslinking of preformed PNVC through pendant carbazole moieties in presence of anhydrous FeCl3 as an oxidant and AB suspension in CHCl3 medium at 65°C. The incorporation of CLPNVC moieties in the CLPNVC‐AB composite was endorsed by Fourier transform infrared analysis. Scanning electron microscopic analysis showed formation of lumpy aggregates with average sizes in the 130–330 nm ranges. The thermal stability of the CLPNVC‐AB composite was appreciably higher than that of the PNVC‐AB composite. The direct current conductivities of the composites were significantly enhanced relative to that of the PNVC homopolymer (10?12–10?16 S/cm) and varied in the range of 10?4–10?2 S/cm depending on the amount of AB loading in the CLPNVC‐AB composite. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 819–824, 2006  相似文献   

2.
N‐vinylcarbazole (NVC) was polymerized in bulk or in toluene in presence of multiwalled carbon nanotube (MWCNT) without any extraneous catalyst. The formation of polyN‐vinylcarbazole (PNVC) was endorsed by striking agreement of FTIR, fluorescence and UV‐visible spectroscopic, thermogravimetric stability, differential scanning calorimetry, and dielectric characteristics of this polymer with the corresponding literature data for authentic PNVC samples prepared by free radical or carbocationic initiation. The polymerization was supposed to be initiated by a single electron transfer between N lone pair of NVC and the electron deficient MWCNT moieties. While PNVC homopolymer is nonconducting (10?12 to 10?16 S/cm), a composite of PNVC with MWCNT isolated from the polymerization system showed high dc conductivity varying from 1.3 to 33 S/cm depending upon the extent of MWCNT loading in the composite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4121–4126, 2007  相似文献   

3.
N‐vinylcarbazole (NVC) was polymerized by 13X zeolite alone in melt (65°C) or in toluene (110°C) and a poly(N‐vinylcarbazole) (PNVC)‐13X composite was isolated. Composites of polypyrrole (PPY) and polyaniline(PANI) with 13X zeolite were prepared via polymerization of the respective monomers in the presence of dispersion of 13X zeolite in water (CuCl2 oxidant) and in CHCl3 (FeCl3 oxidant) at an ambient temperature. The composites were characterized by Fourier transform infrared analyses. Scanning electron microscopic analyses of various composites indicated the formation of lumpy aggregates of irregular sizes distinct from the morphology of unmodified 13X zeolite. X‐ray diffraction analysis revealed some typical differences between the various composites, depending upon the nature of the polymer incorporated. Thermogravimetric analyses revealed the stability order as: 13X‐zeolite > polymer‐13X‐zeolite > polymer. PNVC‐13X composite was essentially a nonconductor, while PPY‐13X and PANI‐13X composites showed direct current conductivity in the order of 10?4 S/cm in either system. However, the conductivity of PNVC‐ 13X composite could be improved to 10?5 and 10?6 S/cm by loading PPY and PANI, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 913–921, 2006  相似文献   

4.
The polymerisation of a mixture of thiophene and N‐vinylcarbazole was achieved in aqueous suspension in the presence of nanodimensional alumina and FeCl3 as oxidant. The resultant composite was found to contain both polythiophene (PTP) and poly(N‐vinylcarbazole) (PNVC) components even after reflux in benzene, which would remove any PNVC homopolymer. The presence of the individual polymer components was endorsed by FTIR spectroscopic analyses. Thermogravimetric analyses showed that the overall stabilities of the composite and the corresponding homopolymers were in the order: PTP–Al2O3 > PTP > PTP–PNVC–Al2O3 > PNVC. Differential thermal analyses studies showed the manifestation of two different exotherms corresponding to the presence of two different polymeric constituents in the PTP–PNVC–Al2O3 composite. Differential scanning calorimetry studies revealed two glass‐transition temperatures (Tg) suggesting the presence of two polymeric moieties in the PTP–PNVC composite. Scanning electron micrographs of the PTP–Al2O3 and PTP–PNVC–Al2O3 composites showed distinctive morphological patterns. Transmission electron microscopic images of the composite revealed that the average particle size varied between 20 and 80 nm. DC conductivities of the composites were of the order of 10?6 S cm?1. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
A nanocomposite of poly(N‐vinylcarbazole) (PNVC) and Al2O3 was prepared by precipitation of a preformed PNVC in a tetrahydrofuran solution onto an aqueous suspension of nanodimensional Al2O3. Prolonged extraction of a PNVC–Al2O3 composite by benzene failed to extract the loaded PNVC from the Al2O3, as shown by Fourier transform infrared studies. Scanning electron microscopy analyses revealed distinct morphological features of the composite, and transmission electron microscopy analyses confirmed that the particle sizes were in the range of 120–240 nm. Thermogravimetric analyses demonstrated the enhanced stability of the nanocomposite relative to the base polymer. Direct current conductivity of the PNVC–Al2O3 composites was found to be about 0.14 × 10?6 S/cm. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2233–2237, 2003  相似文献   

6.
The polymerization of N‐vinylcarbazole in the presence of FeCl3‐impregnated montmorillonite resulted in the formation of a poly(N‐vinylcarbazole)–montmorillonite composite. XRD analysis of the composite revealed no expansion for d001 spacing, in sharp contrast to that for the same composite prepared in the absence of FeCl3. This indicated that the poly(N‐vinylcarbazole) was not intercalated in the montmorillonite lamellae but was glued to it in the same way as was polypyrrole in colloidal silica, zirconia, or tin oxide nanocomposite systems. TEM analysis revealed the particle size of the composite to be in the range 30–40 nm. The dc conductivity of the poly(N‐vinylcarbazole)–montmorillonite composite was in the range (3–5) × 10−5 S/cm depending upon the FeCl3 loading of montmorillonite. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2971–2976, 1999  相似文献   

7.
A conducting nanocomposite of polyacrylamide (PAA) with acetylene black was prepared via Na2AsO3‐K2CrO4 redox initiated polymerization of acrylamide in water containing a suspension of acetylene black. FTIR analyses confirmed the presence of PAA in the nanocomposites. The composite possessed lower thermal stability than AB and exhibited three stages of decomposition upto 430°C. DSC thermogram revealed three endotherms due to minor thermal degradation (at ∼100°C), melting and decomposition (at ∼230°C) and major decomposition (at ∼430°C). TEM analyses indicated the formation of globular composite particles with sizes in 30–70 nm range. In contrast to the very low conductivity of the base polymer the composite showed a dramatic increase in conductivity (0.19–6.0 S/cm) depending upon AB loading. Log (conductivity) –1/T plot showed a change in slope at ∼127°C indicating the manifestation of an intrinsic conductivity region and an impurity conductivity region. The activation energy for conduction as estimated from the slope of region I was 0.008 eV/mol. The C–V plot was linear showing a metallic behavior. For comparison in conductivity PAA‐polyaniline composite was also prepared which however displayed much lower conductivity values. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

8.
Conducting composites of polythiophene (PTP) and polyfuran (PF) with acetylene black (AB) were prepared via chemical oxidative polymerization of thiophene and furan in a suspension of AB in CHCl3 at room temperature using anhydrous FeCl3 as the oxidant. Formation of PTP and PF and their subsequent incorporation in PTP–AB and PF–AB composite systems were confirmed by FTIR analysis. Scanning electron microscope analysis showed the presence of compact clusters of particles in both composites. Transmission electron micrographs of PTP–AB and PF–AB composites showed formation of globular polymer encapsulated AB particles with average diameters of the order of ~100 nm in both systems. Thermogravimetric analysis revealed that the overall thermal stability varied in the order: AB > PTP–AB > PTP and AB > PF–AB > PF. DC conductivity values for the PTP–AB and PF–AB composites were of the order of 10?2 and 10?3 S cm?1, respectively. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
In this article, a conductive foam based on a novel styrene‐based thermoplastic elastomer called poly(styrene‐b‐butadiene‐co‐styrene‐b‐styrene) tri‐block copolymer S(BS)S was prepared and introduced. S(BS)S was particularly designed for chemical foaming with uniform fine cells, which overcame the shortcomings of traditional poly(styrene‐b‐butadiene‐b‐styrene) tri‐block copolymer (SBS). The preparation of conductive foams filled by the carbon black was studied. After the detail investigation of cross‐linking and foaming behaviors using moving die rheometer, the optimal foaming temperature was determined at 180°C with a complex accelerator for foaming agent. Scanning electron microscopy (SEM) images shown that the cell bubbles of conductive foam were around 30–50 µm. The conductivity of foams was tested using a megger and a semiconductor performance tester. SEM images also indicated that the conductivity of foams was mainly affected by the distribution of carbon black in the cell walls. The formation of the network of the carbon black aggregates had a contribution to perfect conductive paths. It also found that the conductivity of foams declined obviously with the foaming agent content increasing. The more foaming agent led to a sharp increasing of the number of cells (from 2.93 × 106 to 6.20 × 107 cells/cm3) and a rapid thinning of the cell walls (from 45.3 to 1.4 µm), resulting in an effective conductive path of the carbon black no forming. The conductive soft foams with the density of 0.48–0.09 g/cm3 and the volume resistivity of 3.1 × 103?2.5 × 105 Ω cm can be easily prepared in this study. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41644.  相似文献   

10.
Imidazolium‐functionalized norbornene and benzene‐functionalized norbornene were synthesized and copolymerized via ring‐opening metathesis polymerization to afford a polymeric ionic liquid (PIL) block copolymers {5‐norbornene‐2‐methyl benzoate‐block ‐5‐norbornene‐2‐carboxylate‐1‐hexyl‐3‐methyl imidazolium bis[(trifluoromethyl)sulfonyl]amide [P(NPh‐b ‐NIm‐TFSI)]} with good thermal stability. On this basis, the solid electrolyte, P(NPh‐b ‐NIm‐TFSI)–lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), through blending with LiTFSI, and the nanosilica composite electrolyte, P(NPh‐b ‐NIm‐TFSI)–LiTFSI–SiO2, through blending with LiTFSI and nanosilica, were prepared. The effects of the PILs and silica compositions on the properties, morphology, and ionic conductivity were investigated. The ionic conductivity was enhanced by an order of magnitude compared to that of polyelectrolytes with lower PIL compositions. In addition, the ionic conductivity of the nanosilica composite polyelectrolyte was obviously improved compared with that of the P(NPh‐b ‐NIm‐TFSI)–LiTFSI polyelectrolyte and increased progressively up to a maximum with increasing silica content when SiO2 was 10 wt % or lower. The best conductivity of the P(NPh‐b ‐NIm‐TFSI)–20 wt % LiTFSI–10 wt % SiO2 composite electrolyte with 7.7 × 10?5 S/cm at 25 °C and 1.3 × 10?3 S/cm at 100 °C were obtained, respectively. All of the polyelectrolytes exhibited suitable electrochemical stability windows. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44884.  相似文献   

11.
A series of polymer–clay nanocomposite (PCN) materials that consist of poly(N‐vinylcarbazole) (PNVC) and layered montmorillonite (MMT) clay are prepared by effectively dispersing the inorganic nanolayers of MMT in an organic PNVC matrix via in situ photoinitiated polymerization with triarylsulfonium salt as the initiator. Organic NVC monomers are first intercalated into the interlayer regions of the organophilic clay hosts, followed by one‐step UV‐radiation polymerization. The as‐synthesized PCN materials are typically characterized by Fourier transform IR spectroscopy, wide‐angle X‐ray diffraction, and transmission electron microscopy. The molecular weights of PNVCs extracted from the PCN materials and the bulk PNVC are determined by gel permeation chromatography analysis with tetrahydrofuran as the eluant. The morphological image of the synthesized materials is observed by an optical polarizing microscope. The effects of the material composition on the optical properties and thermal stability of PNVCs and a series of PCN materials (solution and fine powder) are also studied by UV–visible absorption spectra measurements, thermogravimetric analysis, and differential scanning calorimetry, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1904–1912, 2004  相似文献   

12.
Composites of polyaniline in its emeraldine base form (PANI‐EB) and photo‐acid generators (PAG) show an increase in conductivity upon photo‐irradiation due to the protonation of PANI‐EB. Such materials may be utilized to fabricate conducting patterns by photo‐irradiation. However, the conductivity obtained by direct irradiation of PANI‐EB/PAG composites was normally quite low (<10?3 S/cm) due to aggregation of highly loaded PAG. In this work, poly(ethylene glycol) (PEG), which is a proton transfer polymer, was added to PANI‐EB/PAG. Results showed that addition of low Mw (550) PEG significantly enhance the photo‐induced conductivity. Conductivities as high as 10?1–100 S/cm were observed after photo‐irradiation. This conductivity is comparable to that of PANI‐salt synthesized by oxidizing aniline in the presence of an acid. High Mw (8000) PEG is much less effective than PEG 550, which is attributed to its lower compatibility with PANI. PEG‐grafted PANI (N‐PEG‐PANI) was also studied as an additive. Composites of PANI‐EB and N‐PEG‐PANI showed conductivity as high as 102 S/cm after treatment with HCl vapor. The photo‐induced conductivity of the N‐PEG‐PANI/PANI‐EB/PAG composite reached 10?2–10?1 S/cm. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
In this study, the synthesis of polypyrrole‐b‐vinyl aniline modified cyclohexanone formaldehyde resin (PPy‐b‐CFVAnR) block copolymers by a combination of condensation polymerization and chemical oxidative polymerization processes was examined. First, a cyclohexanone formaldehyde resin containing vinyl aniline units [4‐ vinyl aniline modified cycl?ohexanone formaldehyde resin (CFVAnR)] was prepared by a direct condensation reaction of 4‐vinyl aniline and cyclohexanone with formaldehyde in an in situ modification reaction. CFVAnR and pyrrole (Py) were then used with a conventional method of in situ chemical oxidative polymerization. The reactions were carried out with heat‐activated potassium persulfate salt in the presence of p‐toluene sulfonic acid in a dimethyl sulfoxide–water binary solvent system; this led to the formation of desired block copolymers. The effects of the oxidant–monomer molar ratio, dopant existence, addition order of the reactants, and reaction temperature on the yield, conductivity, and morphology of the resulting products were investigated. PPy‐b‐CFVAnR copolymers prepared with a resin‐to‐Py molar ratio of 1:40 showed conductivity in the range 3.7 × 10?1 to 3.8 × 10?2 S/cm. Oxidant‐to‐Py molar ratios of 0.5 and 1.0 were proposed to be the optimum stoichiometries for higher conductivity and yield, respectively, of the copolymer. The morphology of the copolymer (PPy‐b‐CFVAnR) was investigated with environmental scanning electron microscopy analyses. The results indicate that the surface of the copolymer was composed of well‐distributed nanospheres with average particle diameters of 60–85 nm. Also, the synthesized PPy‐b‐CFVAnR had a higher thermal stability than the pure CFVAnR. The chemical composition and structure of the PPy‐b‐CFVAnR copolymers were characterized by Fourier transform infrared spectroscopy and measurement. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42841.  相似文献   

14.
Cellulose triacetate (CTA) was doped with poly(N‐vinylcarbazole) during the oxidative polymerization of N‐vinylcarbazole using ferric chloride as an initiator to form polymer blends. The blends were characterized by Fourier transform infrared and UV‐vis spectroscopy. The surface morphology was further studied using both scanning electron microscopy and transmission electron microscopy. Langmuir‐Schaefer films of the polymer blends were fabricated. The DC conductivity of the polymer films at room temperature was found to increase with an increase in CTA content up to a value of 0.001 S cm−1. The temperature‐dependent DC conductivity of the polymer films studied in the range of 300–500 K shows an increase in conductivity with an increase in temperature indicating a semiconducting behavior with a negative temperature coefficient of resistivity. The apparent activation energy also showed a pronounced effect with an increase in the temperature as well as an increase in the content of CTA. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

15.
A sulfur/poly(acrylonitrile)–PAN/acetylene black–AB composite, comprising sulfur and PAN encapsulated in the pores of AB was prepared by a solution‐based technique with dimethyl sulfoxide as the solvent. The composite was characterized by TGA, X‐ray diffraction, FTIR, Raman, SEM, TEM, and BET studies. The composite exhibited a high discharge capacity of 1330 mAh/g in the first cycle. The AB additive plays multiple roles in the composite, acting as a conducting matrix for electron transport and as a porous framework that adsorbs and retains electrolyte. The presence of PAN along with the porous carbon matrix in the composite provides the necessary resilience to absorb strains due to volume expansion during cycling. The observed improved performance of the composite is primarily attributed to the small size and homogeneous distribution of sulfur in the composite. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46598.  相似文献   

16.
R. K. Gautam  K. K. Kar 《Fuel Cells》2016,16(2):179-192
The most essential and costly component of polymer electrolyte membrane fuel cells is the bipolar plate. The production of suitable composite bipolar plates for polymer electrolyte membrane fuel cell with good mechanical properties and high electrical conductivity is scientifically and technically very challenging. This paper reports the development of composite bipolar plates using exfoliated graphite, carbon black, and graphite powder in resole‐typed phenol formaldehyde. The exfoliated graphite with maximum exfoliated volume of 570 ± 10 mL g−1 used in this study was prepared by microwave irradiation of chemically intercalated natural flake graphite in a few minutes. The composite plates were prepared by varying exfoliated graphite content from 10 to 35 wt.% in phenolic resin along with fixed weight percentage of carbon black (5 wt.%) and graphite powder (3 wt.%) by compression molding. The composite plates with filler weight percentage of 35/5/3/exfoliated graphite/carbon black/graphite powder offer in‐plane and trough‐plane electrical conductivities of 374.42 and 97.32 S cm−1, bulk density 1.58 g cm−3, compressive strength 70.43 MPa, flexural strength 61.82 MPa, storage modulus 10.25 GPa, microhardness 73.23 HV and water absorption 0.22%. Further, I–V characteristics notify that exfoliated graphite/carbon black/graphite powder/resin composite bipolar plates in unit fuel cell shows better cell performance compared exfoliated graphite/resin composite bipolar plates. The composite plates own desired mechanical properties with low bulk density, high electrical conductivity, and good thermal stability as per the U.S. department of energy targets at low filler concentration and can be used as bipolar plates for proton exchange membrane fuel cells.  相似文献   

17.
Poly‐N‐vinylcarbazole–polyaniline (PANI) composites were synthesized using different loading concentration of aniline (0.025–0.1 M) for their microwave absorption characteristics. The obtained composites were studied by Fourier transform infrared spectroscopy, thermogravimetric analysis technique, and atomic force microscope for their chemical structure, thermal stability, and the surface modifications, respectively. The conductivity increased much with the increase of aniline concentration in the composites. The composite sheets exhibited a strong microwave absorption in the microwave range of 1–10 GHz and achieved a maximum absorption value of 33 dB. The position of absorbing peak shows a mixed trend moving from lower to higher and again to lower with an increasing the concentration of aniline in the poly‐N‐vinylcarbazole–PANI. The new polymer composite exhibited an appreciable electromagnetic interference shielding efficiency compared with the previously reported PANI composites. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

18.
Electrically conductive resins are needed for bipolar plates used in fuel cells. Currently, the materials for these bipolar plates often contain a single type of graphite powder in a thermosetting resin. In this study, various amounts of two different types of carbon, carbon black and synthetic graphite, were added to a thermoplastic matrix. The resulting single‐filler composites were tested for electrical conductivity, and electrical conductivity models were developed. Two different models, the Mamunya and additive electrical conductivity models, were used for both material systems. It was determined how to modify these models to reduce the number of adjustable parameters. The models agreed very well with experimental data covering a large range of filler volume fractions (from 0 to 12 vol % for the carbon black filled composites and from 0 to 65 vol % for the synthetic graphite filled composites) and electrical conductivities (from 4.6 × 10?17 S/cm for the pure polymer to 0.5 S/cm for the carbon black filled composites and to 12 S/cm for the synthetic graphite filled composites). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3293–3300, 2006  相似文献   

19.
Poly (o‐toluidine) (POT) salts doped with organic sulfonic acids (β‐naphthalene sulfonic acid, camphor sulfonic acid, and p‐toluene sulfonic acid) were directly synthesized by using a new solid‐state polymerization method. The FTIR spectra, ultraviolet visibility (UV–vis) absorption spectra, and X‐ray diffraction patterns were used to characterize the molecular structures of the POT salts. Voltammetric study was done to investigate the electrochemical behaviors of all these POT salts. The FTIR and UV–vis absorption spectra revealed that the POT salts were composed of mixed oxidation state phases. All POT salts contained the conducting emeraldine salt (half‐oxidized and protonated form) phase; the pernigraniline (fully oxidized form) phase is predominant in POT doped with β‐naphthalene sulfonic acid, and POT doped with p‐toluene sulfonic acid had the highest doping level. The X‐ray diffraction patterns showed that the obtained POT doped with organic sulfonic acids were lower at crystallinity. The conductivity of the POT salts were found to be of the order 10?3‐10?4 S/cm. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1630–1634, 2005  相似文献   

20.
Co3O4/poly(N‐vinylcarbazole) (PNVC) composite with enhanced optical property was synthesized via a simple in situ bulk polymerization of NVC monomers in the presence of Co3O4 nanoparticles at an elevated temperature. High‐resolution electron microscopic observations showed that the Co3O4 nanoparticles were coated with uniform nanolayer shells of PNVC. Fourier‐transform infrared (FT‐IR) spectroscopy revealed the presence of strong interactions between the PNVC polymer chains with the Co3O4 surface in the Co3O4/PNVC composite. Raman spectroscopic results supported conclusions based on electron microscopy and FT‐IR spectra. The uniform nanolayer coating of PNVC decreases the inherent bulk conductivity of Co3O4, however, significantly increases the fluorescence property of Co3O4 nanoparticles.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号