首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高温固相法制备了Gd_(6-x)WO_(12)∶xEu~(3+)(x=0. 05,0. 1,0. 2,0. 3,0. 4,0. 5)红色荧光粉,并对此荧光粉的结构及发光性能进行了探讨。结果表明,其激发光谱分布在350~550 nm波长范围,较强谱峰位于395 nm、465 nm,可以被In Ga N管芯产生的360~480 nm辐射有效激发;在波长为395 nm近紫外光或者465 nm蓝光激发下,其发射光谱谱峰位于613 nm处。随着掺杂离子Eu~(3+)浓度x的增大,荧光粉荧光强度会随之增强,当强度达到最高时,Eu~(3+)掺杂浓度为x=0. 3,随着掺杂浓度x的进一步增大,强度逐渐降低,发生浓度猝灭。根据Dexter能量共振理论,其自身的浓度猝灭是由电偶极-电偶极相互作用引起的。  相似文献   

2.
采用高温固相法制备了磷灰石结构的Ca_8Gd_2(BO_4)(PO_4)_5O∶Ce~(3+)荧光粉。X射线粉末衍射结果表明所合成的荧光粉为磷灰石相。系统研究了其发光性质,漫反射光谱表明该样品在200~400 nm波段中存在着较宽的吸收带,通过Kubelka-Munk方程估算了Ca_8Gd_2(BO_4)(PO_4)_5O∶Ce~(3+)样品的光学带隙值大约为3.7 eV。监测波长为468 nm时,激发光谱在232 nm处存在着较强的激发峰,归因于Ce~(3+)在此处发生4f-5d的能级跃迁。在232 nm波长激发下,发射光谱的最强发射峰位于468 nm处,归因于Ce~(3+)在此处发生5d-4f的能级跃迁。当Ce~(3+)的掺杂浓度超过1.0 mol%时,发生了浓度淬灭现象。CIE色度坐标显示该样品位于蓝光区域。结果表明,Ca_8Gd_2(BO_4)(PO_4)_5O∶Ce~(3+)荧光粉为一种可被紫外光激发的新型磷灰石结构蓝色荧光粉。  相似文献   

3.
通过高温固相法成功合成了新型磷灰石结构Mg2Y8(BO4)2(SiO4)4F2∶xEu3+(MYBSF∶xEu3+)荧光材料,并研究了不同掺杂浓度下的发光性能。结果表明,Eu3+掺杂MYBSF荧光粉的最佳激发波长为265 nm,最强发射波长位于614 nm。发光强度随着Eu3+浓度的升高而增强,当Eu3+掺杂浓度为7mol%时,其发光性能最好。色坐标研究亦表明,不同掺杂浓度的MYBSF∶xEu3+荧光材料发光性能稳定,色坐标与理想红光色坐标接近,色纯度均高于91%。因此,MYBSF∶xEu3+荧光粉是一种紫外激发红色荧光粉的理想候选材料。  相似文献   

4.
采用提拉法生长共掺Ce和Gd的钇铝石榴石单晶(Ce,Gd∶YAG),开展了白光LED用新型YAG单晶复合K_2SiF_6∶Mn~(4+)荧光粉材料的制备和光谱性能研究。检测到Ce,Gd∶YAG单晶在激发波长为460 nm处有强烈的激发带,可证实存在能量传递。发现当Y~(3+)部分被Gd3+取代后,发射峰向长波长方向移动。研究了Ce∶YAG单晶厚度的变化对其色坐标、亮度、发光效率和色温的影响,发现Ce,Gd∶YAG单晶制备的LED器件发光中红光成分还是不够。为了缓解白光LED用Ce,Gd∶YAG单晶仍然缺少红光的问题,采用丝网印刷法将红色荧光粉K_2SiF_6∶Mn~(4+)印刷在Ce,Gd∶YAG单晶衬底上制备白光LED。研究了不同含量的K_2SiF_6∶Mn~(4+)红色荧光粉对其色坐标、亮度、发光效率和色温的影响。研究发现,随着含量的增加,器件的发光由冷白光逐渐向暖白光区域移动,色温有所降低,显色指数上升。Ce,Gd∶YAG单晶复合红色荧光粉的思路可以对LED照明发暖白光有所参考。  相似文献   

5.
采用高温固相法合成了红色荧光粉Ca_(1-x)WO_4:xEu~(3+)(x=0.02~0.40)。运用X射线衍射仪(XRD),扫描电子显微镜(SEM)以及荧光光谱仪(PL)等对所得材料的结构、形貌以及光学性能进行了表征。结果表明,由于在基体Ca WO_4中,Eu~(3+)取代Ca2+成为发光中心,红色荧光粉Ca WO_4:Eu~(3+)的发光强度随着Eu~(3+)浓度的增加而增加,当x=0.25时,强度达最大值。  相似文献   

6.
实验采用高温固相反应法制备了Gd_2MoO_6:Sm荧光粉,并通过X射线衍射仪和荧光分光光度计对荧光粉的结构和发光性能进行了表征,重点采用控制变量法研究不同种类助熔剂对荧光粉结构影响规律。结果表明,Gd_2MoO_6:Sm~(3+)荧光粉在紫外波段可被有效激发,发射峰值波长位于566 nm、603 nm和655 nm处;掺入少量的助熔剂不会改变荧光粉本身的晶体结构,采用适量的氟化钡(BaF_2)或氯化钡(BaCl_2)能够大幅度提升荧光粉的发光性能。  相似文献   

7.
采用低温燃烧法在600℃的马沸炉中制备了发光光谱可调的SrMgAl_(10)O_(17)∶Eu~(2+),Mn~(2+)荧光粉,并用X射线衍射仪(XRD)、扫描电子显微镜(SEM)以及荧光光谱仪(PL)等测试手段对所制备荧光粉的晶体结构、形貌和发光性质进行了表征。XRD和SEM测试结果表明:通过低温燃烧法合成的SrMgAl_(10)O_(17)∶Eu~(2+),Mn~(2+)荧光粉晶相单一,结晶度高; PL测试结果表明:紫外LED芯片可以有效地激发SrMgAl_(10)O_(17)∶Eu~(2+), Mn~(2+)荧光粉,其发射光谱中观测到两个发射峰,分别位于460 nm和513 nm。当改变荧光粉中Eu~(2+)和Mn~(2+)的掺杂比时,荧光粉的发射光谱由蓝色转变为蓝绿色最终转变为绿色。通过计算掺杂荧光粉的能量传递效率和临界距离,我们得出SrMgAl_(10)O_(17)∶Eu~(2+), Mn~(2+)荧光粉的能量传递机制是电偶极-电四极相互作用的。本文制备的SrMgAl_(10)O_(17)∶Eu~(2+), Mn~(2+)可用于近紫外LED芯片激发的光谱可调白光LED用荧光粉。  相似文献   

8.
介绍1种Sn2+激活的(Sr,Zn)3(PO4)2∶Sn2+荧光粉的高温固相反应合成工艺.制备主峰波长620~630nm的橙红色荧光粉,此种荧光粉的温度特性优于同样用于全光谱荧光灯的(Sr,Mg)3(PO4)2∶Sn2+红色荧光粉.  相似文献   

9.
近十年来,开发新型节能光源是海洋捕捞的重要研究方向之一。随着半导体技术的发展,人们希望用更节能的大功率LED灯取代传统的金属卤化物灯。本文研制了两种绿色荧光粉,Lu AG∶Ce(Lu_(2.945)Al_5O_(12)∶0.055Ce)和YGa AG∶Ce(Y_(2.96)Al_(3.4)Ga_(1.6)O_(12)∶0.04Ce),并将之与江苏博睿光电股份有限公司的商用荧光粉GM537H7D2进行了对比。用3种荧光粉封装功率为60 W的蓝光LED(芯片的发光波长为450 nm附近)COB,发现当硅胶和荧光粉LuAG∶Ce的比例为1∶0.10时,COB流明光效最高,达到125 lm/W;YGaAG∶Ce荧光粉封装COB流明光效最高可达112 lm/W。与之相比较,用商用荧光粉GM537H7D2封装最高可达120 lm/W。LuAG∶Ce荧光粉的最强发射波长在520 nm附近,且其光转化效率很高;在硅胶和荧光粉的比例为1∶0.10时,COB在430~570 nm段可输出较大的光功率,且COB整体的电光转化效率高于33.6%;430~570 nm波段的蓝绿光对鱿鱼等多种海洋经济动物最具诱集效果。因此可认为:LuAG∶Ce荧光粉非常适用于海洋捕捞业的LED大功率COB封装。  相似文献   

10.
本文于探究制备YAG黄色荧光粉的最佳工艺参数,从而提高白光LED的发光性能和生产效率。采用了高温固相法制备Ce~(3+)掺杂铝酸盐YAG(Y_(3-x)Al_5O_(12)∶Ce_x~(3+))黄色荧光粉样品,其中x=0.02,0.04,0.06,0.08,0.1。实验以氧化钇,氧化铈,氧化铝为原料,添加不同助熔剂(硼酸,BaF_2)制得YAG,利用X射线衍射仪(XRD),扫描电子显微镜(SEM),荧光光谱分析仪(PL)等测试分析了产物的物相,形貌及发光性能等。通过对激活剂浓度不同以及助熔剂不同样品的发射光谱进行比较,得出结论:在煅烧温度1 300℃,保温时间为4 h时,当激活剂的掺杂浓度为x=0.06,生成YAG质量的3%的硼酸和3%的BaF_2混合为助熔剂时,制得的YAG∶Ce~(3+)的发光性能最好,并且在主激发光为455 nm的可见光激发下,发射光谱的发射峰值为530 nm。  相似文献   

11.
本文采用高温固相法合成BaSi_2O_2N_2∶Eu~(2+)蓝绿色荧光粉,探索了温度和时间对荧光粉性能的影响,同时通过添加助熔剂有效提升了荧光粉性能。BaSi_2O_2N_2∶Eu~(2+)荧光粉搭配YAG∶Ce~(3+)和CaAlSiN_3∶Eu~(2+)荧光粉,可以达到LED正白光段显色指数R_1~R_(15)大于90的全光谱目的。该方案解决了之前LED光源制作高显色方案中显色指数R_(12)偏低的现象,补充了白光LED缺失深蓝色的部分,对LED的推广有着重要的意义。  相似文献   

12.
采用共沉淀法制备NaGd(WO_4)_2:Eu~(3+)荧光粉,利用394 nm和464 nm光波长激发,观察到源自Eu~(3+)~5D_0→~7F_J(J=1,2,3,4)跃迁的发射。通过拟合Ln(I_0/I-1)与1/k T的关系曲线,获得NaGd(WO_4)_2:1%Eu~(3+)在394 nm和464 nm光波长激发下的热猝灭激活能,分别为0.235eV和0.363eV。研究表明,NaGd(WO_4)_2:Eu~(3+)在464 nm蓝光激发下的红色发光所表现的良好热稳定性,其原因在于该波长热稳定的激发。  相似文献   

13.
采用简单的沉淀法制备了白光LED用Eu_2Mo_4O_(15)∶x%Gd~(3+)(x=0,20,40,60)系列荧光粉。在465 nm蓝光激发下,该荧光粉发射强的红光,而且发射强度与Gd~(3+)的掺杂浓度密切相关。当Gd~(3+)浓度为40%时,激发效率和发光效率最大。热特性的研究表明,40%Gd~(3+)掺杂样品的热猝灭激活能约为0.55 eV。~5D_0和~5D_1到电荷迁移带(CTB)的热激发是导致发光热猝灭的主要因素。  相似文献   

14.
采用水热-热解法制备了Ce~(3+)掺杂的Y_3Al_5O_(12)∶Ce~(3+)黄色荧光粉。研究发现水热-热解法的烧结温度为1200℃,比高温固相法的烧结温度降低了300℃,该荧光粉是激发峰和发射峰分别位于460nm和550nm、跃迁发射为Ce~(3+)的5d→4f的黄色荧光粉。同时通过XRD测定了Y_3Al_5O_(12)∶Ce~(3+)的晶体结构,并进行Rietveld结构精修。  相似文献   

15.
(续上期) 除Tb3+外,Eu2+也常用于绿色荧光粉中.这主要是因为在400 nm左右近紫外激发下,由于Eu2+的4f65d1→4f7能量转移,在380~710 nm发射范围中,主要发射峰位于绿色区域.Zhao等[10]通过高温固相反应制备了Eu2+掺杂Ca10Na(PO1)7基的近紫外白光LED用绿色荧光粉,在400 nm波长激发下、412 nm和531 nm处检测到发射峰,其最强发射峰位于531 nm(如图6所示).  相似文献   

16.
用熔融法制备了Tb~(3+)/Eu~(3+)共掺的硼酸盐玻璃,研究了Tb~(3+)、Eu~(3+)共掺的硼酸盐玻璃的发光性能。结果表明,共掺的硼酸盐玻璃的最强激发峰位于393nm,最强发射峰是位于612nm的红光,存在着Tb~(3+)→Eu~(3+)的能量传递,一定浓度范围内,随着Tb~(3+)的浓度增加,Eu~(3+)的612nm红光的发射强度增强。  相似文献   

17.
目前,商业化的白光LEDs主要通过"蓝光LED芯片+黄色Y_3Al_5O_(12):Ce~(3+)荧光粉"来实现白光发射,但是,Y_3Al_5O_(12):Ce~(3+)缺少红色发光成分,使得这种器件显色指数较低,色温较高,为了改善这种白光LEDs的性能,红色补偿粉成为了研究热点。本文主要阐述了Mn~(4+)掺杂红色荧光粉的最新进展,介绍了材料的合成方法,并对新型的高性能Mn~(4+)掺杂红色荧光粉所面临的问题进行了分析和总结。  相似文献   

18.
采用微波加热法成功制备了YVO4:Eu3+荧光粉,分别用X射线衍射(XRD)、扫描电镜(SEM)、激光粒度仪对产物的晶相、形貌和粒度进行表征,用光致发射光谱(PL)对产物的发光性能进行研究。结果表明,样品为立方晶系YVO4,形貌完整,粒度分布均匀,D50=2.4m,PL谱呈现Eu3+的特征发射峰,最强峰为619nm的红色发射峰。  相似文献   

19.
针对LED荧光转换的要求,为解决LED灯用红色荧光传统掺杂Eu~(3+)成本高的问题,本文采用溶胶凝胶法合成了Mn(Ⅳ)掺杂的铝酸盐荧光粉MAl_(12)O_(19):Mn~(4+)(M=Ba,Sr,Ca)。利用X射线粉末衍射仪、荧光分光光度仪和扫描电镜对样品的结构、荧光性能和形貌进行分析表征。结果表明:SrAl_(12)O_(19):Mn~(4+)和CaAl_(12)O_(19):Mn~(4+)的发射峰位置均在660 nm附近,红色荧光效果较好,而BaAl_(12)O_(19):Mn~(4+)的发射峰位置在625 nm附近,发生了蓝移。当Mn~(4+)掺杂浓度为5%,pH为8左右,SrAl_(12)O_(19):Mn~(4+)荧光粉荧光性能良好。实验改良了溶胶凝胶法合成方法,得到CaAl_(12)O_(19):Mn~(4+)荧光粉的结晶度随煅烧温度的升高而升高,在1 400℃条件下煅烧得到的荧光粉发射光谱强度最大,且荧光粉的发光性能优良、形貌规则、简化了传统溶胶凝胶法的制备方法,可以降低生产成本。  相似文献   

20.
采用高温固相法制备了单掺Dy~(3+)和共掺Dy~(3+),Eu~(3+)的铌酸钾铅(Pb_2KNb_5O_(15),PKN)荧光粉。结果表明,PKN的最佳烧结温度为1 200℃,并且掺杂Dy~(3+)和Eu~(3+)造成晶格常数变小。Dy~(3+)在PKN中的最佳掺杂浓度为2.0mol%,并且利用强极化的Pb~(2+)对Dy~(3+)的强烈作用,使Dy~(3+)的最强激发峰从紫光波段移至蓝光波段,可与目前市场上商用蓝光芯片匹配。460 nm激发光能够同时激发Dy~(3+)和Eu~(3+)发光,并且当Dy~(3+)和Eu~(3+)的共掺浓度分别为2.0mol%和1.5mol%时,PKN荧光粉的色温接近暖白光的理想色温3 000 K。Dy~(3+)和Eu~(3+)共掺杂的PKN荧光粉是一种有望用于暖白光LED的候选材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号