首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过坩埚下降法成功生长出直径为1inch、等径部分长度达到7cm的掺0.2mol%Dy~(3+)的TeO_2晶体,该晶体主体部分无色透明、无裂纹、无明显包裹物,但后半部有裂痕,且有灰白色析出物,在可见光波段透过率约为70%。测试了TeO_2:Dy晶体的荧光光谱,观察到了Dy~(3+)离子外层4f电子能级跃迁产生的特征激发峰和吸收峰,并给出了简单的能级跃迁发光机理图。结果表明,它在363nm近紫外光激发下,能够发射中性白光,在348nm和387nm近紫外光、453nm蓝光激发下,能够发射稳定的暖白光,从而实现通过改变激发光波长调节该晶体发射不同的白光。因此,TeO_2:Dy是一种能够实现可调谐白光发射的荧光单晶候选材料。  相似文献   

2.
实验采用高温固相反应法制备了Gd_2MoO_6:Sm荧光粉,并通过X射线衍射仪和荧光分光光度计对荧光粉的结构和发光性能进行了表征,重点采用控制变量法研究不同种类助熔剂对荧光粉结构影响规律。结果表明,Gd_2MoO_6:Sm~(3+)荧光粉在紫外波段可被有效激发,发射峰值波长位于566 nm、603 nm和655 nm处;掺入少量的助熔剂不会改变荧光粉本身的晶体结构,采用适量的氟化钡(BaF_2)或氯化钡(BaCl_2)能够大幅度提升荧光粉的发光性能。  相似文献   

3.
采用高温固相法制备了Na_2Sr_(1-x-y)P_2O_7:x Eu~(3+),y Gd~(3+)系列红色荧光粉,同时探讨了Eu~(3+)及Gd~(3+)浓度等对样品结构及发光性能的影响。结果表明:在600℃下煅烧所得样品具有与Sr2P2O7类似的结构,属斜方晶系。样品的主激发峰在394 nm左右,归属于Eu~(3+)的~7F_0→~5L_6跃迁;主发射峰位于594 nm和614nm处,分别对应Eu~(3+)的~5D_0→~7F_1磁偶极跃迁和~5D_0→~7F_2电偶极跃迁。在单掺Eu~(3+)的样品中,当其掺杂浓度x从0.02增加至0.34时,Eu~(3+)占据反演对称中心与非反演对称中心的数量之比逐渐增加,导致橙红比(I_(594)/I_(614))逐渐增大。共掺杂Gd~(3+)时,也有类似的现象。通过Gd~(3+)到Eu~(3+)的能量转移增强了Eu~(3+)的~5D_0→~7F_1跃迁发射,此发射强度在Na_2Sr_(0.4)P_2O_7:0.1Eu~(3+),0.5Gd~(3+)中达到最大。  相似文献   

4.
采用高温固相法制备了Gd_(6-x)WO_(12)∶xEu~(3+)(x=0. 05,0. 1,0. 2,0. 3,0. 4,0. 5)红色荧光粉,并对此荧光粉的结构及发光性能进行了探讨。结果表明,其激发光谱分布在350~550 nm波长范围,较强谱峰位于395 nm、465 nm,可以被In Ga N管芯产生的360~480 nm辐射有效激发;在波长为395 nm近紫外光或者465 nm蓝光激发下,其发射光谱谱峰位于613 nm处。随着掺杂离子Eu~(3+)浓度x的增大,荧光粉荧光强度会随之增强,当强度达到最高时,Eu~(3+)掺杂浓度为x=0. 3,随着掺杂浓度x的进一步增大,强度逐渐降低,发生浓度猝灭。根据Dexter能量共振理论,其自身的浓度猝灭是由电偶极-电偶极相互作用引起的。  相似文献   

5.
本文采用高温固相法合成Sr_2Si_5N_8:Eu~(2+)红色荧光粉,通过优化合成工艺(sample 1)以及掺杂微量元素(sample 2),有效地提升了荧光粉的初始性能。采用XRD、SEM等手段进行表征,XRD结果显示采用不同工艺和配方合成所得的荧光粉均没有杂相生成;SEM结果显示,优化合成工艺和微量元素掺杂均能改善荧光粉的形貌,提高结晶度。将sample 1和sample 2和基准样在同等条件下进行封装实验,前两者的光效分别比基准样提高3.38%和4.03%,经过500 h的加速老化后,光衰显著降低。  相似文献   

6.
通过常压合成工艺成功制备了一系列高亮度的(Sr,Ca)AlSiN_3:Eu~(2+) 氮化物荧光粉,比较了常压合成和高压合成工艺对荧光粉晶体结构、光谱特性和晶体形貌的影响。荧光光谱分析表明,常压合成工艺制备的(Sr,Ca)AlSiN_3:Eu~(2+)荧光材料表现出优异的荧光强度,其发射波长位于615 nm~640 nm的红光范围,实现了一定范围内的光谱调控。X射线衍射结果表明,该氮化物红色荧光材料具有正交晶系的CaAlSiN_3晶体结构,且产物中不存在杂质相。峰值波长位于615 nm和625 nm的样品能够作为光谱中的有效红色组成部分用以制备高显色性的白光LED光源。通过LED封装的优化实验,所获得的白光LED光源具有86.8 lm/W的流明效率,并具有良好的显色指数(Ra=85)。进而,通过改变氮化物红粉的组成和比例能够制备具有不同色温(4 000 K~6 000 K)的白光LED光源。  相似文献   

7.
采用高温固相反应法,通过控制温度制备了粒径为20 μm及30μm的YAG∶ Ce3+荧光粉,对制备出的荧光粉进行微观形貌表征,表明烧结温度越高,荧光粉粒径越粗,表面缺陷越少,结晶度越高.将不同粒径的荧光粉进行热淬灭测试并封装成激光照明器件进行激光测试,研究对比发现,在1580℃烧结得到的大粒径荧光粉的热稳定性及对激光的...  相似文献   

8.
本文于探究制备YAG黄色荧光粉的最佳工艺参数,从而提高白光LED的发光性能和生产效率。采用了高温固相法制备Ce~(3+)掺杂铝酸盐YAG(Y_(3-x)Al_5O_(12)∶Ce_x~(3+))黄色荧光粉样品,其中x=0.02,0.04,0.06,0.08,0.1。实验以氧化钇,氧化铈,氧化铝为原料,添加不同助熔剂(硼酸,BaF_2)制得YAG,利用X射线衍射仪(XRD),扫描电子显微镜(SEM),荧光光谱分析仪(PL)等测试分析了产物的物相,形貌及发光性能等。通过对激活剂浓度不同以及助熔剂不同样品的发射光谱进行比较,得出结论:在煅烧温度1 300℃,保温时间为4 h时,当激活剂的掺杂浓度为x=0.06,生成YAG质量的3%的硼酸和3%的BaF_2混合为助熔剂时,制得的YAG∶Ce~(3+)的发光性能最好,并且在主激发光为455 nm的可见光激发下,发射光谱的发射峰值为530 nm。  相似文献   

9.
采用高温固相法制备了单掺Dy~(3+)和共掺Dy~(3+),Eu~(3+)的铌酸钾铅(Pb_2KNb_5O_(15),PKN)荧光粉。结果表明,PKN的最佳烧结温度为1 200℃,并且掺杂Dy~(3+)和Eu~(3+)造成晶格常数变小。Dy~(3+)在PKN中的最佳掺杂浓度为2.0mol%,并且利用强极化的Pb~(2+)对Dy~(3+)的强烈作用,使Dy~(3+)的最强激发峰从紫光波段移至蓝光波段,可与目前市场上商用蓝光芯片匹配。460 nm激发光能够同时激发Dy~(3+)和Eu~(3+)发光,并且当Dy~(3+)和Eu~(3+)的共掺浓度分别为2.0mol%和1.5mol%时,PKN荧光粉的色温接近暖白光的理想色温3 000 K。Dy~(3+)和Eu~(3+)共掺杂的PKN荧光粉是一种有望用于暖白光LED的候选材料。  相似文献   

10.
采用高温固相法合成了红色荧光粉Ca_(1-x)WO_4:xEu~(3+)(x=0.02~0.40)。运用X射线衍射仪(XRD),扫描电子显微镜(SEM)以及荧光光谱仪(PL)等对所得材料的结构、形貌以及光学性能进行了表征。结果表明,由于在基体Ca WO_4中,Eu~(3+)取代Ca2+成为发光中心,红色荧光粉Ca WO_4:Eu~(3+)的发光强度随着Eu~(3+)浓度的增加而增加,当x=0.25时,强度达最大值。  相似文献   

11.
采用低温燃烧法在600℃的马沸炉中制备了发光光谱可调的SrMgAl_(10)O_(17)∶Eu~(2+),Mn~(2+)荧光粉,并用X射线衍射仪(XRD)、扫描电子显微镜(SEM)以及荧光光谱仪(PL)等测试手段对所制备荧光粉的晶体结构、形貌和发光性质进行了表征。XRD和SEM测试结果表明:通过低温燃烧法合成的SrMgAl_(10)O_(17)∶Eu~(2+),Mn~(2+)荧光粉晶相单一,结晶度高; PL测试结果表明:紫外LED芯片可以有效地激发SrMgAl_(10)O_(17)∶Eu~(2+), Mn~(2+)荧光粉,其发射光谱中观测到两个发射峰,分别位于460 nm和513 nm。当改变荧光粉中Eu~(2+)和Mn~(2+)的掺杂比时,荧光粉的发射光谱由蓝色转变为蓝绿色最终转变为绿色。通过计算掺杂荧光粉的能量传递效率和临界距离,我们得出SrMgAl_(10)O_(17)∶Eu~(2+), Mn~(2+)荧光粉的能量传递机制是电偶极-电四极相互作用的。本文制备的SrMgAl_(10)O_(17)∶Eu~(2+), Mn~(2+)可用于近紫外LED芯片激发的光谱可调白光LED用荧光粉。  相似文献   

12.
采用固相烧结法制备了红色长余辉发光材料CaTiO_3:Pr~(3+),讨论了Pr~(3+)、Zn~(2+)添加量对CaTiO_3:Pr~(3+)发光性能的影响。结果表明,随着Pr~(3+)、Zn~(2+)含量的增加,材料的余辉性能先增大后减小,当Pr~(3+)含量为0.5%,Zn~(2+)含量为20%时,材料的余辉性能达到最优。对材料热释光谱的研究表明深陷阱能级的出现是长余辉性能提高的主要原因。  相似文献   

13.
采用水热-热解法制备了Ce~(3+)掺杂的Y_3Al_5O_(12)∶Ce~(3+)黄色荧光粉。研究发现水热-热解法的烧结温度为1200℃,比高温固相法的烧结温度降低了300℃,该荧光粉是激发峰和发射峰分别位于460nm和550nm、跃迁发射为Ce~(3+)的5d→4f的黄色荧光粉。同时通过XRD测定了Y_3Al_5O_(12)∶Ce~(3+)的晶体结构,并进行Rietveld结构精修。  相似文献   

14.
采用提拉法生长共掺Ce和Gd的钇铝石榴石单晶(Ce,Gd∶YAG),开展了白光LED用新型YAG单晶复合K_2SiF_6∶Mn~(4+)荧光粉材料的制备和光谱性能研究。检测到Ce,Gd∶YAG单晶在激发波长为460 nm处有强烈的激发带,可证实存在能量传递。发现当Y~(3+)部分被Gd3+取代后,发射峰向长波长方向移动。研究了Ce∶YAG单晶厚度的变化对其色坐标、亮度、发光效率和色温的影响,发现Ce,Gd∶YAG单晶制备的LED器件发光中红光成分还是不够。为了缓解白光LED用Ce,Gd∶YAG单晶仍然缺少红光的问题,采用丝网印刷法将红色荧光粉K_2SiF_6∶Mn~(4+)印刷在Ce,Gd∶YAG单晶衬底上制备白光LED。研究了不同含量的K_2SiF_6∶Mn~(4+)红色荧光粉对其色坐标、亮度、发光效率和色温的影响。研究发现,随着含量的增加,器件的发光由冷白光逐渐向暖白光区域移动,色温有所降低,显色指数上升。Ce,Gd∶YAG单晶复合红色荧光粉的思路可以对LED照明发暖白光有所参考。  相似文献   

15.
通过高温固相合成法制备了高效橙红色荧光粉Sr2.96Eu0.04SiO5,研究了烧结温度、保温时间、助熔剂含量对荧光粉发光性能的影响。通过XRD和光谱测试表征得出:最佳的烧结温度为1 500℃,保温时间为4h;当助熔剂H3BO3为3wt%含量时,荧光粉的结晶程度、发光强度最好。荧光粉的激发峰为宽带激发谱(300~500nm),发射主峰为597nm。  相似文献   

16.
用熔融法制备了Tb~(3+)/Eu~(3+)共掺的硼酸盐玻璃,研究了Tb~(3+)、Eu~(3+)共掺的硼酸盐玻璃的发光性能。结果表明,共掺的硼酸盐玻璃的最强激发峰位于393nm,最强发射峰是位于612nm的红光,存在着Tb~(3+)→Eu~(3+)的能量传递,一定浓度范围内,随着Tb~(3+)的浓度增加,Eu~(3+)的612nm红光的发射强度增强。  相似文献   

17.
水热法制备Ni(OH)2及其超级电容性能   总被引:1,自引:0,他引:1  
舒畅  陈野  张春霞  葛鑫  张密林 《电源技术》2007,31(7):534-537
采用水热法制备了Ni(OH)2,X射线衍射光谱(XRD)测试表明样品为β-Ni(OH)2.通过循环伏安、恒流充放电和交流阻抗对其超级电容性能进行了研究.结果表明:β-Ni(OH)2具有典型的法拉第准电容特性,当pH=12,水热反应温度为180℃时,Ni(OH)2具有最大比容量303.7 F·g-1,其电极电阻(RE)为0.1 Ω,且经多次循环后表现出良好的循环稳定性能.  相似文献   

18.
以钨酸钠和乙酸锌为原料,去离子水为溶剂,通过水热法合成前驱物,采用固相烧结制备Zn WO4,探讨不同的p H值和煅烧温度对Zn WO4结构和电化学性能的影响,并通过X射线衍射(XRD)、扫描电子显微镜(SEM)、恒电流充放电和循环伏安测试对其进行表征。结果表明:不同p H下制备的Zn WO4均为表面粗糙的球形颗粒;当p H为7.5、煅烧温度为900℃时,制备得到的黑钨矿型Zn WO4具有良好的电化学性能;在50 m A/g电流密度下,样品的首次充电比容量为710.9 m Ah/g,首次放电比容量为419.9 m Ah/g。  相似文献   

19.
采用高温固相法制备了Sr_(2-x)Ca_xSi_5N_8:Eu~(2+)荧光粉,研究了Ca替代Sr对Sr_2Si_5N_8:Eu~(2+)晶体结构及发光性能的影响规律。结果表明Ca_2Si_5N_8和Sr_2Si_5N_8结构之间只能形成有限固溶体,随着Ca掺杂含量的改变,固溶体结构逐渐从正交晶系过渡到单斜晶系;进而导致其发射光谱呈现先红移后蓝移现象,且荧光粉的热猝灭性能逐渐呈降低趋势,但衰减幅度取决于Ca掺杂含量,当x1.2时荧光粉的热猝灭性能衰减幅度增大,相应的衰减机制主要采用位移坐标模型来解释。  相似文献   

20.
采用高温固相反应法制备了Li(4-3x)W2O8:Eux系列钨酸盐红色荧光粉,探讨了其合成工艺条件,确定了Eu3+的最佳含量为x=1,试样的最佳反应温度为850℃。该荧光粉具有较宽的激发光谱,适合与近紫外、蓝光芯片配合使用。其发射光谱主峰位于615nm,色坐标位于(X=0.666,Y=0.331)左右,具有较高的色纯度。因此,这种荧光粉是一种可能应用在白光LED上的红色荧光粉材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号