首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ayse Bedeloglu 《纺织学会志》2013,104(12):1359-1373
This paper reports the results of a detailed study about specific properties of hybrid yarns and woven fabrics containing those yarns. For this aim, the fabrication procedures and physical properties of acrylic/stainless steel (SS) and cotton/acrylic/SS ply yarns were presented, and then, relations between those and electrical, electromagnetic shielding effectiveness (EMSE) and some usage properties of woven hybrid fabrics made from those with different constructions were investigated. EMSE of plain and twill fabrics were evaluated against radiating electromagnetic wave spectrum over a frequency 0–3000?MHz. A comparison of physical properties of yarns regarding wire diameter and the use properties of fabrics regarding weave type, wire diameter, and yarn type measured were presented. The functional textile products of complex applications can be achieved with low cost, easily since those yarns and fabrics were produced on conventional textile manufacturing machines with small modifications. The present study indicated that use of SS wire-based yarns in fabrics significantly increased the air permeability, pilling resistance, thermal resistance, and the flexural rigidity of hybrid fabrics. The plain weave fabrics exhibited higher EMSE values over 20?dB in higher frequencies and higher thermal absorbtivity values compared to twill fabrics.  相似文献   

2.
In recent years, the use of electrical and electronic devices has grown rapidly. These devices cause electromagnetic interferences, which could threaten human life. In order to solve this problem, intensive research to develop textile surfaces having electromagnetic shielding properties continues. In this paper, we study textile surfaces knitted with conductive copper and stainless steel wires wrapped with acrylic yarns and also core yarns produced by using conductive yarns to test the electromagnetic shielding properties of the fabrics. It was concluded that the knitted structure of the fabrics affected the electromagnetic shielding effectiveness (EMSE). Besides, the fabrics knitted on a double needle bed of the knitting machine with higher amounts of conductive yarns and unit weights could not provide the targeted improvement in the EMSE values with respect to the fabrics produced on a single needle bed of the knitting machine.  相似文献   

3.
采用涤纶长丝、棉粗纱和超细316L不锈钢丝在HN32-04型棉纺花式捻线机上纺制不锈钢丝包芯纱,并在龙星LXC-252SCV型电脑横机上编织纬平针织物及浮线添纱针织物。介绍纺纱原理及编织工艺,并测试不锈钢丝包芯纱的拉伸性能以及针织物的电磁屏蔽效能。结果表明,不锈钢丝包芯纱的平均拉伸断裂强力为38.96 N,位移为124.30 mm,其拉伸过程分为不锈钢丝断裂、纱线中纤维抽拔、纱线断裂过程。随着电磁波频率的不断增强,纬平针织物和浮线添纱针织物的电磁屏蔽效能下降。针织物结构不同,织物紧密程度和线圈大小不同,对不同频段电磁波的屏蔽能力也不同。  相似文献   

4.
为制备综合性能优异的电磁屏蔽织物,采用芳纶/不锈钢纤维混纺纱,通过改变组织结构、厚度、叠合角度的方法来织造电磁屏蔽织物,并分析其电磁屏蔽性能。结果表明:三原组织中,平纹织物的电磁屏蔽效能最佳,缎纹织物的电磁屏蔽效能最差;织物厚度增加,电磁屏蔽效能随之增强;织物叠合角度为45°时明显优于叠合角度0°和90°时的电磁屏蔽效能;芳纶/不锈钢纤维混纺机织物还具有优异的阻燃性能、机械性能和耐水洗性能。  相似文献   

5.
为开发弹性回复性更强的防辐射针织物,在全聚纺细纱机上采用嵌入式纺纱方法纺制3 种不同线密度的棉/ 不锈钢/ 氨纶双芯纱和3 种对应线密度的棉/ 不锈钢包芯纱,设计织制成1+ 1罗纹组织织物,测试分析纱线的包覆效果和主要性能及织物的弹性回复性、电磁屏蔽等性能。结果表明:6 种纱线包覆效果及成纱性能均良好;相比不锈钢包芯纱线织物,双芯纱织物在弹性回复和屏蔽电磁波方面有很大的优势,达到一般性民用电磁屏蔽织物的要求且能保证人体舒适性,这种新结构纱线在全聚纺设备上生产是可行的;开发弹性电磁屏蔽织物时,不仅要合理选择长丝预牵伸倍数等工艺参数,还要考虑到织物的服用性、耐久性及生产成本。  相似文献   

6.
褚玲  赵其明 《上海纺织科技》2012,40(1):48-50,57
设计了几种代表性织物组织结构的不锈钢纤维混纺针织物,研究了织物组织结构对针织物电磁屏蔽效能的影响。织物组织结构选择充满系数较高的双罗纹组织、打鸡双面组织、添纱衬垫组织、衬纬组织和绕经组织,以降低织物厚度、密度、孔隙等因素对织物电磁屏蔽效能的影响。对所有织物进行了电磁屏蔽效能测试,结果显示:双罗纹织物、双面织物、添纱衬垫织物、衬纬织物的电磁屏蔽效能都很不理想,且远远低于含不锈钢纤维机织平纹布,但是绕经织物的电磁屏蔽效能要比其他组织的针织物的屏蔽效能高得多,基本能达到国标上对屏蔽服的屏蔽效能要求。绕经织物与其他几种针织物最大的不同就是在纵向多了一些连续的含不锈钢纤维的混纺纱。说明针织物组织结构是影响电磁屏蔽效能的关键因素,可通过在织物纵横向形成纵横交错的导通的金属网栅的方式来改善不锈钢纤维混纺针织物的屏蔽效能。  相似文献   

7.
含有不锈钢丝的导电纱编织而成的针织物,其导电性的大小取决于织物的伸长。这一特性可用来生产一种透气型针织物传感器。为了获得充分的传感再现性,织物组织的选择至关重要。  相似文献   

8.
为研究组织结构与磨损对织物屏蔽性能的影响,以及不锈钢长丝对织物折皱回复性的影响,使用自制的棉/不锈钢长丝包芯纱织制了3种不同组织的机织物,测试了织物在0.3~1 500 MHz频段上的电磁屏蔽性能,并使用平磨仪对各织物分别摩擦60、120、180、240 及300次后,测试了织物磨损后的电磁屏蔽性能;同时,采用视频序列法测试了织物的动态折皱回复角。结果表明:织物组织结构对电磁屏蔽性能有一定影响,平纹组织结构紧密,屏蔽效果好;经过若干次磨损后,织物的电磁屏蔽性能先小幅升高后逐渐降低;相同磨损条件下,试样耐磨性越好,屏蔽效能的降低幅度越小;由于不锈钢长丝的加入使织物的折皱回复性降低,可以采用浮长更长的组织改善织物起皱现象。  相似文献   

9.
In this study, a range of conductive hybrid knitted fabrics and their composites have been investigated for shielding effectiveness in the frequency ranges of 50 MHz to 1.5 GHz (low frequency) and 4 to 8 GHz (C-Band). Carbon and stainless steel (SS) filaments were combined in Dref-3 spinning machine and different hybrid yarns were prepared. The plain- and rib-knitted fabrics were made in V-bed flat knitting machine from the prepared hybrid yarns. The composite laminate was prepared by sandwiching a ply of fabric between the polypropylene films in compression moulding machine at 180 °C for 5 min under a consolidation pressure of 12 bar. All the fabrics and composites were tested for shielding effectiveness (SE) in coaxial transmission line and C-band waveguide with the help of vector network analyser. It was observed that fabric having both conductive loop and inlaid yarns exhibited higher SE of 20.2 dB than other fabrics in low-frequency range. However, in the composite form, carbon composite with SS inlaid yarn showed better SE of 45 dB than other composites. In C-band frequency range, conductive loop fabric structures yielded high shielding effect in course direction compared to wales direction. Compared to fabric form, the composite showed higher SE for all frequency ranges. This study proposes that knitted fabrics and their composites can be utilized as electromagnetic shields in wide frequency ranges.  相似文献   

10.
选择铜镍涂层织物、银纤维交织织物、铜镍金属丝织物、不锈钢交织织物4种电磁屏蔽面料进行研究,利用同轴传输线法测试它们的电磁屏蔽效能。结果表明:材料中的金属丝比例越大,织物的电导率越大,电磁屏蔽效果越好。在金属丝含量相同的情况下,银丝的电磁屏蔽性能优于不锈钢。经洗涤后,银纤维交织织物和不锈钢交织织物的电磁屏蔽效果没有明显变化,而铜镍涂层织物和铜镍金属丝织物的电磁屏蔽性能均有明显衰减。  相似文献   

11.
In this paper, a kind of novel filaments/short fibers composite yarns containing stainless steel (SS) were produced by an innovative ring-spinning method. On the basis of the shielding mechanism of the electromagnetic (EM) shielding material, a method for fabricating a multifunctional SS composite fabric with EM shielding characteristics was successfully developed. Coaxial transmission line method was used to investigate the influences of different factors, such as radiant frequency, metal content, metal mesh size, and geometry, on electromagnetic shielding effectiveness (EMSE) of the composite fabrics in the frequency range of 15–3000?MHz. The notabilities of these factors were examined using analysis of variance (ANOVA). A regression model equation was setup using the above factors as variables, and verification of accuracy and practicability to this model was also carried out. The experimental results indicate that average EMSE of composite fabrics is 20.76–51.92?dB in the frequency of 15–3000?MHz, which indicates that the influence of the studied factors was considerable.  相似文献   

12.
采用磁性纤维混纺纱、不锈钢纤维混纺纱,设计了4种织物,对其电磁屏蔽性能进行了测试和分析。结果表明:组合使用两种纱线的织物其电磁屏蔽性能相比单一使用这两种纱线的织物电磁屏蔽性能好,并以磁性纤维混纺纱和不锈钢纤维混纺纱按1∶1米通方式设计织造的织物屏蔽性能最佳。  相似文献   

13.
Abstract

In this research, it is aimed to develop tufted carpets with electromagnetic shielding (EMSE) effectiveness. For this purpose, stainless steel, copper, silver wires, and metalized silver PA filaments were commingled with textured polyester yarn to produce composite yarn. Composite yarns were used in tufted carpet backing fabric with different densities and directions. The EMSE of carpet samples was measured in the frequency range of 0.8–5.2?GHz by free space technique. The effects of metal type, composite yarn density, and placement direction on the EMSE were statistically analyzed in 0.8–3.0 and 3.0–5.2?GHz frequency ranges separately. Stainless steel and silver wires provided better EMSE in the range of 0.8–3.0?GHz. Stainless steel showed better EMSE in lower frequencies than 3?GHz. The metallized silver was more effective above 3?GHz. The increase in metal density significantly increased EMSE for all metal types. Carpets containing metal in two directions provided multidirectional shielding and maximum EMSE reached up to 44?dB level. As a result of the study, tufted carpets which can provide multi-axial protection were produced successfully.  相似文献   

14.
程岚  薛雯  张同华 《纺织学报》2014,35(7):36-0
为更好地开发和利用功能性纱线和面料,以不锈钢短纤维、不锈钢长丝以及棉纤维为原料,采用一种长丝/短纤维复合结构纱线的纺纱工艺开发出不同金属纤维含量的新型复合结构纱线。对复合结构纱线的结构,毛羽,拉伸性能以及导电性能进行测试分析。同时测试了利用该种复合结构纱线开发出的电磁屏蔽面料的屏蔽性能。实验结果表明:利用此种复合结构纱线制作方法所开发出的纱线具有较优异的毛羽性能、力学性能和导电性能,并且不锈钢纤维含量对纱线性能有着较大的影响。利用该种复合结构纱线开发出的面料屏蔽率达到90%-99.9%,可用于日常生活用电磁防护装材料。  相似文献   

15.
In recent decades, the use of conductive textile structures for electromagnetic shielding effectiveness has been increased. In order to reduce, mitigate or completely eliminate destructive and adverse effects of these waves. For this purpose, the Copper/Cotton core spun yarn was manufactured and the copper wires with various diameters (0.06, 0.07, 0.08?mm) as core component were used. Copper/cotton core spun yarns were knitted with two knit structures, Full Milano and 1?×?1 Rib, at machine gauge (8, 10, and 12 per inch). The electromagnetic shielding effectiveness (EMSE) was examined using ASTM D4935-10 standard at frequency range between 0.03 to 1.5?GHz. The results show that heavier and thicker samples with larger stitch density have the higher EMSE values and also Full Milano knit structure with miss stitches provide larger shielding effectiveness values than 1?×?1 Rib knit structures.  相似文献   

16.
The study aims to investigate the effect of hollow yarn structure and the sheath-core proportion of hollow yarns on the permeability properties of the knitted fabrics. In order to accomplish this, core yarns in the yarn count of 59 tex were produced by using cotton, viscose, wool, and polyester fibers in the sheath and different ratios of polyvinyl alcohol (PVA) in the core. After completion of yarn production on ring spinning frame, the yarns in the form of packages were used to produce plain knitted fabrics. Fabrics were then divided into two groups, one of which was washed during a time period in order to remove PVA from the core to obtain hollow yarn structure. Air and water permeability, and wicking properties of the knitted fabrics were measured before and after washing processes. Mechanical properties such as pilling and bursting strength of the fabrics were also examined. The results show that washing process and PVA proportion used to produce core spun yarns have a significant effect on the permeability and mechanical properties of the fabrics.  相似文献   

17.
制备同规格的普通黏胶纤维机织物、石墨烯黏胶纤维机织物及不同不锈钢丝质量分数的石墨烯黏胶纤维/不锈钢丝机织物,对比它们的导电、防电磁辐射、防紫外线、抗静电、力学(拉伸、弯曲、耐磨)及透气等性能。结果表明:普通黏胶纤维经石墨烯改进后,所制成的石墨烯黏胶纤维机织物的导电、防电磁辐射、防紫外线、抗静电、力学(拉伸、弯曲、耐磨)等性能都有所改善,其中防紫外线与耐磨性能提高显著,透气性能下降明显;石墨烯黏胶纤维/不锈钢丝机织物的导电、防电磁辐射、防紫外线和抗静电、经向拉伸断裂强力、纬向抗弯刚度、透气性能都优于石墨烯黏胶纤维机织物,纬向拉伸断裂强力、经纬向拉伸断裂伸长率、经向抗弯刚度及耐磨性能不及石墨烯黏胶纤维机织物;随着不锈钢丝质量分数在7.0%~20.0%范围内的增加,石墨烯黏胶纤维/不锈钢丝机织物的导电、防紫外线、抗静电、经向拉伸断裂强力、纬向抗弯刚度及透气性能增强,纬向拉伸断裂强力、经纬向拉伸断裂伸长率、经向抗弯刚度、耐磨性能减小,不锈钢丝质量分数变化对防电磁辐射性能影响较小。当不锈钢丝质量分数为7.0%时,石墨烯黏胶纤维/不锈钢丝机织物的综合性能最佳。  相似文献   

18.
This study revealed the effect of cam setting and number of yarn ply on air permeability and bursting strength of weft-knitted fabrics from glass yarn. Change in cam setting from loose to tight level increased fiber content, and stitch-density; while it decreased loop length. Fabrics with 3-ply yarn exhibited higher fiber content; lower stitch-density; and longer loop length than fabrics with 2-ply yarn. Cam setting showed more pronounced effect on physical properties of fabric than number of yarn ply. Fabrics knitted via tight cam setting level exhibited less air permeability, and higher bursting strength than fabrics knitted via loose cam setting. Fabrics from 3-ply yarn showed less air permeability and higher bursting strength than fabrics from 2-ply yarn. Loop length, wale density, and fiber content were determined as the most effective physical properties on permeability and bursting strength. A negative correlation was detected between air permeability and bursting strength.  相似文献   

19.
In this study, we designed electromagnetic shielding fabrics (EMSFs) that consist of composite yarn containing stainless steel fibers. Ten EMSFs with different metal fiber contents and metal grid sizes were examined as research specimens, and tests were conducted to determine electromagnetic shielding effectiveness (EMSE) and wearability indices. The indices were analyzed and the comprehensive performances of the EMSFs evaluated with the fuzzy matter-element method. Experimental results show that the EMSE improved and fabric wearability worsened when metal fiber content increased and metal grid size decreased. Moreover, fuzzy matter-element evaluation findings suggested that the best comprehensive performance was observed in the composite fabric containing 11.71% metal and whose metal mesh measures 1.41 mm2; these features reflect the maximum Euclid approach degree.  相似文献   

20.
为探究超细金属纱线在力学循环加载后的弯曲刚度下降和能量耗散行为,对不同结构镀金钼丝纱线进行了50次循环弯曲和200次往复摩擦实验,并对摩擦前后的表观形态、拉伸性能和电学性能进行了比较。基于镀金钼丝纱线的微观形貌和实验结果,结合能量损耗分析方法,研究其在弯曲循环载荷和摩擦往复载荷下的力学及结构响应,定量分析金属丝的可编织性。结果表明:镀金钼丝在循环弯曲和往复摩擦载荷下,微观和宏观结构受到损伤,力学性能下降,接触电阻略有增大;该条件下,双股镀金钼丝刚度和强度下降程度最大,不适合上机织造,单股和三股镀金钼丝动态力学性能稳定,且在动态载荷作用下能保持良好的电学性能,可用做电磁屏蔽织物等功能性材料编织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号