共查询到7条相似文献,搜索用时 3 毫秒
1.
Abaya is a traditional Muslim woman’s outer garment. It is black in colour, and must be worn over the normal day-to-day clothing according to Islamic law. It is mandatory to wear Abaya in Arabian Gulf countries irrespective of the outside environmental temperature, which can be up to 50°C. Having many layers of clothing including Abaya makes it extremely uncomfortable for the wearer in a hot environment. Thermal comfort performance is, therefore, essential for fabrics used for Abaya. This study investigated some commercially available woven Abaya fabrics for thermal resistance, air permeability, thermal comfort, vapour resistance and fabric structural and surface properties. The results indicated that the Abaya fabrics with different weave structures, fibre composition and fabric weight have greater influence on the fabric thermal comfort performance. 相似文献
2.
Protective clothing protects the body from external influence like heat, chemicals, mechanical hazards, bad weather, etc. by shielding the human body from harsh environmental effects. The maintenance of thermal balance is one of the most important aspects of protective clothing. The study aims to investigate the thermal comfort properties of woven hybrid fabrics produced with high performance core spun yarns. For this purpose, meta-aramid, e-glass, Technora® and Dyneema® fibres were combined using core yarn spinning method in order to enhance the protective performance characteristics. The effects of the core/sheath ratio and type of core materials on the thermal comfort characteristics were investigated and evaluated statistically. The results revealed that, core/sheath ratio, types of core materials have significant effects on thermal comfort characteristics of the fabrics. As the core ratio increases from 19 to 56%, the air permeability of the fabrics increases whereas their thermal conductivity and thermal absorptivity properties decrease. Meta-aramid/E-glass core fabrics can be preferable for protective clothing due to high air permeability and thermal conductivity values. 相似文献
3.
Investigating the effect of material and weave design on comfort properties of bilayer-woven fabrics
Muhammad Umar Nazir Khubab Shaker Yasir Nawab Muhammad Zohaib Fazal Muhammad Imran Khan 《纺织学会志》2017,108(8):1319-1326
The paper focuses on the development of a bilayer-woven fabric and investigating the effect of weave design and material type on its comfort properties. Face layer was plain woven with cotton yarn, while two different weave designs (2/2 and 3/1 twill) and four different materials (cotton, polyester, micropolyester and nylon) were used for the back layer. The comfort properties of fabric, including air permeability (AP), thermal resistance, water vapour resistance and overall moisture management capacity, were determined. It was found that both the layers of fabric as a whole contribute to the comfort properties of bilayer fabric. The highest AP was exhibited by fabrics having both layers of cotton, while 3/1 twill samples have a lower value of thermal resistance as compared to the 2/2 twill samples. The results further showed that micro polyester woven in 3/1 twill weave exhibits better comfort properties. 相似文献
4.
Thermal comfort is one of the most important components of comfort which shows physiological, psychological, and physical harmony between human body and environment. The heat and moisture transfer capacity of fabric from skin to environment affects the thermal comfort of garments. The transfer capacity depends on the characteristic features of raw materials and fabric structural properties. In this study, it is aimed to determine the advantages of knitted fabric types, taking into account the environmental condition and activity level by measuring the thermal comfort properties such as air permeability, wicking, moisture management, thermal and water vapor resistances. Two knitted structures composed of tuck and float combinations and six raw materials were chosen for the fabrics produced. According to the measurement results, the polyester and cotton/Coolmax fabrics with float stitches have had good liquid moisture transport properties. Besides, high air permeability and low water vapor resistance have been obtained in viscose and Tencel LF fabrics with tuck stitches. On the basis of the results obtained in this investigation, and taking into consideration thermal behavior of human body, four women’s and five men’s T-shirts are designed. These T-shirt designs may be helpful for further approaches on the optimization of thermal comfort for sports activities in hot environment. 相似文献
5.
This study presents the thermal comfort properties of woven fabrics made of Kermel, cotton/nylon and cotton/nylon /Kermel-blended yarns. Our aim in this study is to combine the high comfort properties of cotton/nylon fibres with high thermal protective properties of Kermel fibre in different woven fabrics. Thus, Kermel (100%), cotton/nylon (50:50) and four blends of the 50% cotton fibres with nylon and Kermel (40:10, 30:20, 20:30 and 10:40) were spun on a ring-spinning frame and twisted into two-folded yarns with the same yarn count of 30/2(Ne) and twist level of 560 TPM. Using the produced yarns, woven fabrics with identical characteristic and structure were also produced. Then, the thermal comfort and physical properties of fabrics were studied in terms of fabric porosity, thermal resistance, thermal conductivity, water vapour resistance and air permeability. The results show that the porosity, air permeability and thermal resistance increase with Kermel fibre blend ratio. Conversely, the water vapour resistance decreases with increase of Kermel fibre blend ratio up to 40%, while 100% Kermel-woven fabric exhibits a higher water vapour resistance value. Nevertheless, the thermal conductivity of cotton/nylon-blended Kermel woven fabric is unchanged with increase of Kermel fibre blend ratio up to 40%, whereas at 100% Kermel fibre blend ratio, the lowest thermal conductivity is obtained. The obtained results implied that woven fabric produced from cotton/nylon (50/10) blended with 40% Kermel fibre resulted in proper thermal comfort properties. 相似文献
6.
7.
This paper presents a study on the thermal properties of single-jersey knitted fabrics manufactured using ring, compact and ring/compact folded yarns. The variations in thermal properties depending on the yarn twist and traveller weight of folded yarn single-jersey knits were discussed. It was found that the thermal resistance of knitted fabrics generally increases as the traveller weight decreases, and also water vapour permeability reduces as the traveller weight decreases. The water vapour permeability and air permeability of knitted fabrics increase as the twist increases. The thermal conductivity of knitted fabrics decreases as the twist increases. The air permeability and water vapour permeability values were higher for compact folded yarn fabrics as compared to those values of ring and ring/compact folded yarn fabrics. It is observed that yarn twist and traveller weight have affected different thermal properties of single-jersey folded yarn fabrics. 相似文献