首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Teat cup liner slips, manual milking machine adjustments, milk yields, and milking times were recorded during both morning and evening milkings for 8 d on 97 Holstein cows in The Pennsylvania State University dairy herd. Fore and rear udder heights (distance from floor to udder), udder levelness, distances between teats (before and after milking), teat lengths, teat diameters, and teat end shapes were measured on the same cows. Product-moment correlations among the morphological characteristics, linear slips, manual adjustments, milk yields, and milking times were determined. Residual correlations from a model including lactation number and DIM (linear and quadratic) were also calculated. The variation among cows in machine liner slips and manual adjustments within and across lactation number and DIM can be partially explained by udder and teat morphology. Wider teats were associated with increased linear slips and increased manual adjustments. More tilted udders (rear quarters lower than front quarters) were associated with increased liner slips and tended to be associated with increased manual adjustments. In addition, larger teat diameters and longer teats tended to be associated with increased liner slips.  相似文献   

2.
Sixteen cows in middle to late lactation were milked for 3.5 days at 12-h intervals except for a 24-h interval between third and fourth milkings. A cowside quarter milking unit was used. Quarters were classified by infection status. Milk chloride, lactose, somatic cell concentrations, N-acetyl-B-D-glucosaminidase activity, and cell differential counts were determined. Following the omitted milking, concentrations of milk chloride and somatic cells were elevated and lactose concentration reduced in infected quarters. In uninfected quarters, chloride concentration increased, and lactose concentration decreased after the 24-h interval. The milk N-acetyl-B-D-glucosaminidase activity was elevated only in quarters infected with major pathogens. Changes of milk secretion induced by an omitted milking are affected by infection status, and additional secretory cell damage in quarters infected with a major pathogen may result from an omitted milking.  相似文献   

3.
The objective of this study was to investigate milk yield and frequency of visits to the milking station of primiparous versus multiparous cows at different stages of lactation on farms with automatic milking systems (AMS) in the Upper Midwest United States. Forty farms were included in the study, and daily AMS software data were collected for 18 mo. For the investigation of milk yield and milking visits, stage of lactation was categorized into 14 periods, 7 d in length for the first 28 d in milk (DIM) and 30 d in length thereafter until 328 DIM. Cow traffic flow to the AMS (free or guided) was included in the model. For the evaluation of failures and refusals, stage of lactation was categorized into 6 periods, 7 d in length each for the first 28 DIM, and 2 periods of 150 d in length each thereafter until 328 DIM. Failures are milking station visits where a cow fails to be milked due to lack of machine attachment although it is time for the cow to be milked. Refusals are milking station visits before adequate time has passed since previous milking, thus the cow leaves the milking station without being milked. Data from lactation days beyond 328 DIM were excluded from the study. Primiparous cows in free-flow systems produced less milk than multiparous cows until the 11th stage of lactation and produced more milk from the 12th stage until the end of the study period. Primiparous cows in guided-flow systems produced less milk than multiparous cows all 14 stages of lactation, but were approaching the milk yield of multiparous cows at the end of the study period. This was a biologically normal lactation curve for primiparous cows. However, estimated peak ratio (primiparous vs. multiparous cows' peak milk yield) was lower than industry standards. Both traffic flow systems had fewer milking visits for primiparous cows compared with multiparous cows in early lactation. This lower milking frequency persisted until the 11th stage of lactation in free-flow systems. In guided-flow systems, primiparous cows were milked less frequently until the 5th stage of lactation, had similar milking frequency in the 6th stage of lactation, and were milked more frequently thereafter. Failures were greater for primiparous cows during all stages of lactation. However, the greatest differences were detected in the early stages of lactation. Primiparous cows had 0.067 more failures/cow per day on average than multiparous cows during wk 1 of lactation. For the remaining lactation stages, differences in failures ranged from 0.003 to 0.039. Refusals were less frequent (0.4 to 0.6/d) for primiparous cows during the first 2 wk of lactation, similar for wk 3 of lactation, and more frequent for the remaining lactation stages (0.10 to 0.14/d). Failures and refusals were only evaluated in free-flow systems. These findings appear to indicate a potential lagging performance for primiparous cows in early lactation as compared with multiparous cows. Additional investigation into improving the adaptation of primiparous cows to AMS in early lactation may be warranted.  相似文献   

4.
Milking characteristics differ between the 4 quarters of a dairy cow udder. In particular, milking time is mostly prolonged in hind quarters compared with front quarters because of the usually higher amount of stored milk. The standard milking routine (STDMR) in both conventional and automatic milking systems (AMS) consists of teat preparation of all 4 quarters, followed by attachment of the 4 teat cups, regardless of the distribution of milk between quarters. In the current study, an alternative teat preparation and milking routine (ALTMR) in AMS was tested, which consisted of cleaning and starting the milking of hind teats before cleaning and attachment of front teats. The hypothesis was based on the fact that hind quarters have usually a longer milking time than front quarters. Starting the milking of hind quarters while the front teats are being cleaned may reduce the difference in the end of milking between front and hind quarters and thus reduce total milking time. Both routines were tested on 5 Swedish dairy farms equipped with AMS in a 4-wk experiment in which treatments were alternated weekly. Total milk yield did not differ between treatments. Machine-on time (MOT) was longer in ALTMR than in STDMR because the difference in milking time between hind and front quarters was less than the time needed to prepare the front teats. However, the longer MOT in ALTMR was compensated by a shorter total preparation time, including the attachment of the first teat cup, as only the hind teats (instead of all 4 teats) were cleaned before milking was started. This resulted in a similar total milking time from start of cleaning of the first quarter until the end of milking of the last quarter in both treatments. Because of the prolonged MOT, average milk flow rate was lower in ALTMR than STDMR. Peak flow rate was higher in ALTMR than STDMR, but only in teat cups 1 (first attached, hind quarter) and 3 (third attached, front quarter), whereas main milk flow was higher in ALTMR than STDMR in both front quarters. In conclusion, splitting teat cleaning and the start of milking between hind and front quarters does not prolong total milking time, including teat cleaning. The partially positive effect on peak and main milk flow indicates that the ALTMR is a suitable milking routine in AMS. In herds with a greater difference of milk stored in hind compared with front quarters, a reduced total milking time can be expected for ALTMR.  相似文献   

5.
Cow throughput in an automatic milking system (AMS) is limited by system parameters such as the time required for pre-milking udder preparation and cup attachment, physiological responses of the cow (such as milk let-down and milking-out rate), milking machine features and cow behaviour. A single-factor cross-over design was used to investigate the effect of pre-milking teat brushing on milk processing time in an AMS operating in an extensive grazing farming system. Teat brushing consisted of two roller brushes tracking up each teat three times (total brushing time of up to 45 s/cow). Cows were allocated to one of two treatment groups with either no brushing (NB) or brushing (B) for a 4-week period before being changed to the other treatment. Teat brushing resulted in shorter average cups-on-time (B = 506.1 s, NB = 541.0 s, P = 0.0001), longer average milk processing time (B = 10.30 min, NB = 9.76 min, P = 0.001) and no difference in daily milk yield (B = 14.67, NB = 14.71 kg/cow, P = 0.826). There was no difference between the two treatments in the success of cup attachment (B = 3.76%, NB = 5.10% unsuccessful milking attempts, P = 0.285). The estimated time cost of pre-milking teat brushing was 53 min for every 100 milkings, equivalent to an additional 5-6 milkings for every 100 milkings by an AMS. The importance of these potential time savings is discussed in relation to automatic milking in farming systems that aim for a lower per cow milking frequency and high ratio of cows to AMS.  相似文献   

6.
Milk leakage in dairy cows is a symptom of impaired teat sphincter function. Milk leakage is related to an increased risk of mastitis in heifers and cows, and causes hygiene problems. The aim of our study was to assess whether teat shape, condition of teat orifice, and peak milk flow rate are risk factors for milk leakage. We conducted a longitudinal observational study in 15 German dairy farms in which cows were maintained in loose housing. The farms were visited monthly at 2 consecutive milkings. During the evening milking, milk flow curves were measured with the LactoCorder. Milk leakage was recorded during the subsequent morning milking, when cows entered the milking parlor. Immediately after detachment of the milking cluster, teat shape, teat end shape, and condition of the teat orifice of cows were assessed between 9 and 100 d in milk (DIM) and during late lactation (>250 DIM). Data from 1600 cows were analyzed. Milk leakage was treated as the binary response variable in a logistic regression model with herd as a random effect. Primiparous cows with high peak milk flow and teat canal protrusion were at greater risk of milk leakage. High peak milk flow rate, short teats, teat canal protrusion, inverted teat ends, and early lactation increased the risk of milk leakage in multiparous cows. Random herd effects accounted for only 10% of the total variation, indicating that the impact of management or other herd-level factors on the occurrence of milk leakage is virtually negligible for practical purposes.  相似文献   

7.
Automatic milking systems allow cows voluntary access to milking and concentrates within set limits. This leads to large variation in milking intervals, both within and between cows, which further affects yield per milking and composition of milk. This study aimed to describe the degree to which differences in milking interval were attributable to individual cows, and how this correlated to individual differences in yield and composition of milk throughout lactation. Data from 288,366 milkings from 664 cow-lactations were used, of which 229,020 milkings had milk composition results. Cows were Holsteins, Red Danes, and Jerseys in parities 1, 2, and 3. Data were analyzed using a linear mixed model, with cow-lactation as a random effect and assuming heterogeneous residual variance over the lactation. Cow-lactation variance was fitted using linear spline functions with 5 knot-points. Residual variance was generally greatest in early lactation and declined thereafter. Accordingly, animal-related variance tended to increase with progression of lactation. Milking frequency (the reverse of milking interval) was found to be moderately repeatable throughout lactation. Daily milk yield expressed per milking was found to be highly repeatable in all breeds, with the highest values occurring by the end of lactation. Fat percentage had only moderate repeatability in early to mid lactation but increased toward the end of lactation. Individual level correlations showed that cows with higher milking frequency also had greater yields, but had lower fat percentage. Correlations were slightly weaker in very early lactation than in the remaining parts of lactation. We concluded that individual differences exist among cows milked automatically. Cows with higher yields are milked more often and have lower fat content in their milk.  相似文献   

8.
This study evaluated the effect of 4 criteria for determining the end-point of milking on milk yield, milk composition, completeness of milking-out, teat skin condition, somatic cell count (SCC), and the incidence of clinical mastitis (CM) in pasture-based dairy cows milked over 35 wk. The objective was to reduce milking duration without affecting milk production, SCC, or CM. Milking end-point treatments were as follows: cluster removed at a milk flow rate of 0.2 kg/min (ACR200); cluster removed at a milk flow rate of 0.4 kg/min (ACR400); cluster removed at a milk flow rate of 0.2 kg/min or at a maximum cluster attachment time from d 5 of lactation (MaxTEarly); and cluster removed at a milk flow rate of 0.2 kg/min until an average of 63 ± 21 d in milk, then cluster removed at a milk flow rate of 0.2 kg/min or a maximum cluster attachment time (MaxTPeak). Maximum cluster attachment times were set at 7.5 min and 5.4 min for morning and afternoon milkings, respectively. Cows (approximately 94/treatment) were assigned to treatment at calving and milked twice daily at intervals of 9 and 15 h. Milking duration was shorter for ACR400, MaxTEarly, and MaxTPeak compared with ACR200. During wk 1 to 15, milk, protein, and lactose yields were less for MaxTEarly than for ACR400 and MaxTPeak, but not different from ACR200. During wk 16 to 35 and over the entire experiment, total milk, fat, protein, and lactose yields did not differ among treatments. Teat condition did not differ among the 4 treatments. Postmilking strip yield in wk 12 was greatest for MaxTEarly and least for ACR200; at wk 27, however, treatment had no effect on the completeness of milking-out. No differences were observed in either teat condition or the proportion of cows with at least 1 case of CM during the 35 wk. Somatic cell count was low across all treatments, but highest for ACR400. Increasing the automatic cluster remover threshold setting from 0.2 to 0.4 kg/min decreased milking duration without affecting milk production, CM, or teat condition. Combining a cluster removal milk flow threshold setting with a maximum cluster attachment time, when applied from either early lactation or from peak lactation, reduced milking duration without affecting milk production, CM, or SCC. Both strategies have potential to improve milking efficiency in dairy herds in which premilking preparation is minimal.  相似文献   

9.
A longitudinal study involving 73 primiparous (PP) and 47 multiparous (MP) Holstein cows was conducted over an 8-month period to assess the associations between locomotion score (LCS) and milk production, dry matter intake (DMI), feeding behaviour, and number of visits to an automatic milking system (AMS). Twice weekly, all cows were locomotion scored (scale 1-5) by the same observer. Individual eating behaviour and individual feed consumption at each cow visit to the feed troughs, individual milk production, the time of milking, and the number of milkings for each cow were recorded for the day of locomotion scoring and the day before and after. Dependent variables, such as milk yield, DMI, etc. were modelled using a mixed-effects model with parity, LCS, days in milk (DIM), the exponential of -0.05 DIM, and the interaction between parity and LCS, as fixed effects and random intercepts and random slopes for the linear and the exponential of -0.05DIM effects within cow. LCS did not affect time of attendance at feed troughs, but affected the location that cows occupied in the feed troughs. The time devoted to eating and DMI decreased with increasing LCS. Milk production decreased with LCS>3. The number of daily visits to the AMS also decreased with increasing LCS. The cows with high LCS were fetched more often than the cows with low LCS. Overall, PP cows were more sensitive to the effects of increasing LCS than were MP cows. The decrease in milk production observed with increasing LCS seemed to be affected similarly by the decrease in DMI and by the decrease in number of daily visits to the AMS. A further economic loss generated by lame cows with AMS will be associated with the additional labour needed to fetch them.  相似文献   

10.
Milk yield, milking frequency, intermilking interval, teat-cup attachment success rate, and length of the milking procedure are important functional aspects of automatic milking systems (AMS). In this study, these variables were compared for 2 different models of AMS (AMS-1, with free cow traffic, and AMS-2, with selectively guided cow traffic) and auto-tandem milking parlors (ATM) on 4 farms each. Data on milking-stall visits and milkings of 20 cows were recorded on 3 successive days by means of video observations. Data were evaluated with mixed-effects models. Milk yield did not differ among the 3 milking systems. Milking frequency in the AMS was 2.47/d [95% confidence interval (CI) = (2.38, 2.56)], and was significantly higher than the 2 milkings/d in ATM. Milking frequency was lower for cows with a higher number of days in milk (DIM) in AMS-1 [change of −0.057/10 DIM, CI = (−0.070, −0.044)], but remained constant for cows with varying DIM in AMS-2 [change of −0.003/10 DIM, CI = (−0.034, 0.027)]. As a consequence, milking frequency was higher in early lactation [by 0.603, CI = (0.102, 1.103)] and lower in late lactation in AMS-1 than in AMS-2 [by −0.397, CI = (−0.785, −0.008)]. The intermilking interval showed the opposite pattern. Teat-cup attachment was more successful in AMS-1 than in AMS-2 (98.4 vs. 94.3% of the milkings), with some variation among farms (range: AMS-1 96.2 to 99.5%; AMS-2 91.5 to 96.1%). The length of the entire milking process did not differ among the milking systems [454 s, CI = (430, 478)], although the preparation phase was longer [changes in comparison with ATM: in AMS-1 by a factor of 2.90, CI = (2.30, 3.65), and in AMS-2 by 5.15, CI = (4.09, 6.48)] and the actual milking phase was shorter in both AMS-1 and AMS-2 than in ATM [changes in comparison with ATM: in AMS-1 by a factor of 0.76, CI = (0.62, 0.94), and in AMS-2 by 0.75, CI = (0.60, 0.93)]. The admission [changes in comparison with ATM: in AMS-1 by a factor of 2.56, CI = (1.55, 4.22), and in AMS-2 by 3.07, CI = (1.86, 5.08)] and preparation phases lasted longer in AMS-2 than in AMS-1, whereas the time required by the cows to leave the milking stall did not differ among the systems [changes in comparison with ATM: in AMS-1 by a factor of 0.89, CI = (0.55, 1.44), and in AMS-2 by 1.02, CI = (0.63, 1.66)]. In conclusion, different technical approaches to automatic milking led to differences in teat-cup attachment success rates, in the duration of several phases of the milking process, and in milking frequency. The capacity of an AMS could be further improved by shortening the preparation phase and reducing the proportion of failed milkings.  相似文献   

11.
Transitioning a dairy herd to an automatic milking system (AMS) from a conventional parlor system may be stressful for the cow, as many changes occur during this process. Chronic stress may affect the welfare of the cow, and acute stress during milking can decrease milk yield. Therefore, it is important to quantify if and how long stress during adaptation to an AMS might persist. Seventy-seven cows with acceptable udder and teat conformation that would not interfere with adaptation to the AMS and that were lactating n = 18, early [0 to 100 d in milk (DIM)]; n = 27, mid (100 to 200 DIM); and n = 32, late (200+ DIM) for the full duration of the project were chosen for observation. All cows had been milked previously in a double-6 herringbone milking parlor. Four stress-related behaviors [step-kick behavior both before and after attachment of teat cups, elimination (urination and defecation instances), and vocalization] were recorded during milking by trained observers, whereas milk yield was automatically recorded by the AMS. Data were collected for 24-h periods beginning on the day the cows transitioned to milking in the AMS (d 0), and on d 1, 2, 4, 8, 16, and 32 thereafter. Instances of elimination and vocalization were greater on d 0 compared with all other days (elimination: d 0 = 3.1 ± 0.09, d 1 = 0.6 ± 0.07, and 0 ± 0 instances thereafter; vocalization: d 0 = 1.7 ± 0.07, d 1 = 0.05 ± 0.04, and 0 ± 0 instances thereafter). Milk yield increased between d 0 (18.3 ± 1.7 kg) and d 1 (30.9 ± 1.7 kg). Primiparous cows (n=28) were more likely than multiparous cows (n = 49) to display step-kick behaviors both before (8.3 ± 2.5; 5.5 ± 0.6, respectively) and after (15.6 ± 2.4; 13.3 ± 1.3, respectively) teat cup attachment during milking. Eight days after introducing the cows to the AMS, over 60% of the herd was milking voluntarily and 95% of the herd was milking voluntarily within a month, which suggests that cows did not find the AMS aversive. Greater elimination and vocalization behavior and lower milk yield on d 0 relative to subsequent days indicated initial stress and discomfort with the milking process in the new system; however, the cows appeared to adapt within 24h.  相似文献   

12.
Milk leakage (ML), or milk observed dripping or flowing from one or more teats between milkings, has been associated with increased risk of udder infections and mastitis in dairy cows. Preliminary observations indicate that ML might occur more often in automatic milking systems (AMS) than in conventional milking systems (CMS), but comparative data on the incidence of ML in AMS or in CMS are not available. Therefore, the occurrence of ML at various observation periods was studied in one AMS with cows housed in a free-stall barn in comparison to CMS with cows housed either in a free-stall barn or a tie-stall barn and milked at regular intervals in a herringbone milking parlor. Relationships between ML and other cow and management factors were also examined. In each of 2 yr, all cows (n = 230 total; 46 cows present both years) were observed at 2-h intervals during six 24-h periods. At least one ML occurred in 39.0 (AMS) vs. 11.2% (CMS) of individual cows and in 16.2 (AMS) vs. 2.9% (CMS) of 24-h cow days studied. Milk leakage was not related to milk production, parity, stage of lactation, or estrous status. However, in the AMS, 62% of primiparous and 28% of multiparous cows leaked milk at least once. Milk leakage occurred more often in rear than in forequarters. Cows were usually lying down when ML was observed, but intervals from previous milking varied, especially in AMS. In AMS, about one-fifth of the ML observations occurred < or = 4 h after milking, and half of those were associated with disturbances at the previous milking. Milk flow rate was higher in quarters leaking milk than in other quarters. Strategies to reduce milk leakage in AMS may be important to minimize potential risks of udder disease.  相似文献   

13.
Occurrence of milk ejection and course of milk removal were investigated in 18 dairy cows at milking intervals of 4, 8 and 12 h in early, mid or late lactation. Milk ejection occurred fastest in early lactation at a milking interval of 12 h and was delayed at short milking intervals and in late lactation. Storage capacity of the udder was estimated and the actual milk yields of experimental milkings were calculated as a percentage of storage capacity, i.e. degree of udder filling. It was shown that the occurrence of milk ejection after the start of teat stimulation is a function of udder filling. The relationship between the degree of udder filling and the delay from the start of milking until commencement of milk ejection followed a linear regression curve. Changes in occurrence and course of milk ejection have to be considered in practical milking, mainly in late stages of lactation and after short milking intervals. In automatic milking systems where variable and sometimes extremely short milking intervals occur, the duration of pre-milking udder preparation should be adapted to the expected milk yield at each individual milking procedure.  相似文献   

14.
The primary aim of this observational study, in a single herd milked using multiple automatic milking system units, was to describe associations of quarter milk yield variability and quarter peak milk flow rate with cow-level factors. Information from the current lactation of 1,549 primiparous and multiparous cows was collected from January to December 2015. Data from each individual milking used in the analysis included quarter milk yield (QMY), udder milk yield, quarter peak milk flow rate (QPMF), quarter average milk flow rate (QAMF), quarter milking time, and milking interval. Milking interval and milk yield were used to calculate milk production rate (kg/h) at the quarter and udder levels. We investigated associations between QPMF and milking interval, QPMF and days in milk, and QMY and QAMF. A strong association between QPMF and both QAMF and milking interval was observed. A moderate association was found between QPMF and stage of lactation. However, QMY was not a useful indicator of QPMF because of the weak association observed between these variables. In this study, rear quarter QPMF was significantly increased by 3% compared with front quarter QPMF (1.45 vs 1.41 kg/min). Quarter milk yield was calculated as a percentage contribution of total udder milk yield per 10-d in milk window and ranked from lowest to highest contribution. Quarter contribution to udder milk yield showed a high level of variability, with 39% of animals having all 4 quarters change contribution rank at least once during part of or the whole lactation. Only 14% of cows were observed to have no change in quarter rank. When quarter contribution was assessed, irrespective of physical position of quarter within the udder, the percent of highest to lowest contribution across the lactation was relatively stable. The standard deviation of quarter milk production rate for each cow was regressed against the same cow's peak udder milk production rate, within a lactation, to ascertain whether quarter milk production rate variance could be used to predict peak udder milk production rate. Knowledge of the intra-udder quarter milk production rate standard deviation for an individual cow is not useful in predicting peak udder milk production rate. Quarter milking time appears to be a useful indicator to predict the optimal order of teatcup attachment. Analysis from this large, single-herd population indicates that QPMF is associated with the cow-level factors milking interval and days in milk, and that intra-udder QMY is highly variable.  相似文献   

15.
《Journal of dairy science》2022,105(9):7513-7524
Adjusting end-of-milking criteria, in particular applying a maximum milking time determined by expected milk yield at an individual milking session, is one strategy to optimize parlor efficiency. However, this strategy can be difficult to apply practically on farm due to large differences in session milk yield, driven by milking interval, which affects milking routines and can be limited by in-parlor technology. The objective of this study was to test the hypothesis that a single fixed milking time (duration) could be applied at all milking sessions without compromising milk production or udder health for a range of milking intervals. To test the hypothesis, 4 experimental herds were established: (1) herd milked twice a day (TAD) using a 10- and 14-h interval, (2) herd milked TAD using an 8- and 16-h interval, (3) herd milked 3 times in 2 d using a 10–19–19-h interval, and (4) herd milked once a day (OAD). Herds consisted of 40 cows each, and were established for two 6-wk experimental periods, one in peak lactation and the other in mid-late lactation. Within each herd, half the cows had an end-of-milking criterion of 0.35 kg/min (Flow), and the other half had milking ended after a fixed period of time (FixedT) based on the average milking session yield, the daily milk yield divided by average number of milkings per day, irrespective of milking interval. We found no differences in daily milk yield between end-of-milking criteria due to residual milk from one milking likely increasing the proportion of milk in the udder cistern at the next milking session for the FixedT treatment. However, fat yield was compromised when the percentage of the herd with a truncated milking exceeded an estimated 33% at a milking session, which occurred in the TAD 8–16 herd due to the divergence from the average milking interval (in the case of TAD, 12–12 h). Applying a fixed milking time had no detrimental effects on udder health, except in the OAD herd in mid-late lactation, which had both a higher cell count and new intramammary infection rate. This warrants further investigation, although the majority of cultured bacteria were coagulase-negative staphylococci (CNS). Consequently, we conclude that, in general, with appropriate monitoring (e.g., weekly inspection) to ensure the proportion of the herd with truncated milkings does not exceed 33%, farmers in pasture-based dairy systems can use a fixed milking time to improve parlor efficiency.  相似文献   

16.
Experiments were designed to investigate the suitability of a combination of a short manual teat stimulation with a short latency period before teat cup attachment to induce and maintain oxytocin release and milk ejection without interruption. In Experiment 1, seven dairy cows in mid lactation were manually pre-stimulated for 15, 30 or 45 s, followed by either 30 s or 45 s of latency period. It was shown that all treatments induced a similar release of oxytocin without interruption until the end of milking. In particular, the latency period of up to 45 s did not cause a transient decrease of oxytocin concentration. In Experiment 2, milking characteristics were recorded in seven cows each in early, mid, and late lactation, respectively. Because the course of milk ejection depends mainly on the degree of udder filling, individual milkings were classified based on the actual degree of udder filling which differs between lactational stages but also between morning and evening milkings. All animals underwent twelve different udder preparation treatments, i.e. 15, 30, or 45 s of pre-stimulation followed by latency periods of 0, 30, 45, or 60 s. Milking characteristics were recorded. Total milk yield, main milking time and average milk flow rate did not differ between treatments if the degree of udder filling at the start of milking was >40% of the maximum storage capacity. However, if the udder filling was <40%, main milking time was decreased with the duration of a latency period up to 45 s, independent of duration of pre-stimulation. Average milk flow at an udder filling of <40% was highest after a pre-stimulation of 45 s followed by a latency period of another 45 s. In contrast, average milk flow reached its lowest values at a pre-stimulation of 15 s without additional latency period. However, average milk flow after a 15-s pre-stimulation increased with increasing latency period. In conclusion, a very short pre-stimulation when followed by a latency period up to 45 s before teat cup attachment remains a suitable alternative for continuous stimulation to induce milk ejection.  相似文献   

17.
Eleven Danish Holstein cows were used to examine the effects of quarter health (healthy vs. unhealthy), milking interval (12 vs. 6 h), and sampling time during milking on the concentration of 8 milk constituents [acetone, β-hydroxybutyrate (BHBA), N-acetyl-β-d-glucosaminidase (NAGase), somatic cell count (SCC), urea, fat, protein, and lactose]. The selection criterion was that each cow should have 2 or 3 healthy and 1 or 2 unhealthy quarters. Foremilk was collected before attaching the teat cups of the milking machinery, and thereafter, milk samples were collected automatically from each quarter every 45 s during milking. Compared with milk from healthy quarters, milk from unhealthy quarters had a higher concentration of BHBA, NAGase, SCC, and protein during the entire milking, whereas urea was higher in the last part of the milking process. Healthy quarters had a higher content of acetone and lactose during the whole milking, whereas fat was higher in the first part of the milking process. When the cows were milked at the 6-h interval, all milk constituents except lactose and protein were higher during the whole (NAGase, SCC, and urea) or part of the milking (acetone, BHBA, and fat) compared with when cows were milked at the 12-h interval. Lactose was higher in the first part of the milking at the 12-h compared with the 6-h interval, whereas protein was not affected by milking interval. β-Hydroxybutyrate, NAGase, SCC, and fat increased during the milking process, whereas acetone, urea, protein, and lactose decreased. Foremilk was remarkably different for all constituents, except acetone, and should not be used as a representative milk sample to achieve the true level of a milk constituent. If these milk constituents are to be used in an inline management system, these effects should be taken into account.  相似文献   

18.
The objective of this study was to evaluate the effects of forestripping as a premilking stimulation technique on milk yield, milking unit attachment time, and milk flow rates in Holstein dairy cattle. Multiparous Holstein cows (n = 24) were divided into two groups (HPE, high producing, early lactation; LPL, low producing, late lactation) based on prestudy milk yield and stage of lactation. Within the production group, cows were randomly assigned into treatment (n = 6) and control groups (n = 6) in a switchback design. Cows were milked twice daily and treatments were switched after 20 milkings. Premilking udder preparation for the treatment group was as follows: forestripping, predipping with 0.5% iodine, and drying with paper towels followed by unit attachment. Udder preparation for the control group was identical except forestripping was not performed. Data were analyzed by using the PROC Means and PROC Mixed models described by SAS. During the study, cows in the HPE group produced significantly more milk and had longer milking unit attachment times compared with cows in the LPL group. The milk flow rate was 0.36 kg/min faster for the HPE cows compared with the LPL cows. There was no significant effect of order of treatment administration on any outcome variable. There were no significant differences in milk yield, milk unit attachment time, or milk flow for animals that were forestripped compared with animals that were not forestripped. In this study, the addition of forestripping to an otherwise acceptable premilking udder preparation routine did not increase milking performance of multiparous Holstein dairy cows.  相似文献   

19.
Frequent milking during early lactation of dairy cows increases milk production throughout lactation; however, whether this response is regulated systemically via lactogenic hormones, locally in the mammary gland, or both is unknown. We hypothesized that the effects of frequent milking on milk production during early lactation are regulated via local mechanisms. Ten multiparous cows were assigned at parturition to unilateral frequent milking [UFM; twice daily milking of the left udder half (2×), or 4 times daily milking of the right udder half (4×)] for d 1 to 21 of lactation. After treatment, cows were milked twice daily for the remainder of lactation. At the first milking after calving, milk yield from individual quarters was measured to verify that udder halves produced equal amounts of milk prior to treatment. Thereafter, individual quarters were milked on d 3 and 7, weekly for the first 5 wk of lactation, and once every 3 mo for the remainder of lactation. During UFM, cows produced 3.9 ± 0.7 kg/d more from the side milked 4× than the side milked 2×. Upon cessation of treatment, milk production from the side milked 4× decreased, but remained at 1.8 ± 0.5 kg/d more than the side milked 2× for the remainder of lactation. After milk yield was corrected to the equivalent of a whole-udder basis, acute milk yield responses to frequent milking were found to be consistent with previous reports. Moreover, we observed greater persistency in the milk yield response, which lasted throughout lactation. We conclude that both immediate and persistent effects on milk production of frequent milking during early lactation are regulated at the level of the mammary gland. Our results demonstrate that UFM is a valid and efficient model for investigating the effects of frequent milking during early lactation in dairy cows.  相似文献   

20.
Effects of six different milking intervals on the distribution of milk between cistern and alveoli were studied in a randomized, incomplete Latin Square experiment with four lactating Holstein cows. Cisternal and alveolar milk was measured by udder quarter at 4, 8, 12, 16, 20 and 24-h intervals with a 3-d interperiod of regular milking. Cisternal milk was evacuated using a cannula after injection of an oxytocin-receptor blocking agent, followed by an injection of oxytocin to remove the alveolar fraction. Milk samples from each fraction and quarter were collected for analysis. Cisternal and alveolar milk increased with milking interval and represented on average 30 and 70% of the milk stored in the udder, respectively. Fat content in alveolar milk remained constant during the first 16 h, increasing rapidly thereafter, reaching its maximum at 24 h (6.95%). Fat content in cisternal milk decreased with milking interval and reached its minimum at 24 h (0.96%). Total fat yield tended to increase for cisternal milk with longer milking intervals, but it increased markedly for alveolar milk, showing that fat globules did not pass freely from alveoli to cistern between milkings. Milk protein content was greater in rear quarters than in front quarters for both milk fractions. Milk protein content increased in the cisternal milk fraction and tended to increase in the alveolar milk fraction with longer milking intervals, but values did not differ between cisternal and alveolar fractions or between front and rear quarters. Total protein yield increased with milking interval in both fractions, indicating that casein micelles passed more freely than fat globules from the alveolar to the cisternal compartment. In conclusion, the short-term effects of milking intervals in milk composition were explained by the changes observed in alveolar and cisternal milk ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号