首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ce1 − xFexO2 − δ/LaAlO3(001) thin films (x = 0.01 and 0.03) have been prepared by pulsed laser deposition method and thoroughly characterized using X-ray diffraction (XRD), dc magnetization, near edge X-ray absorption fine structure (NEXAFS), and X-ray magnetic circular dichroism (XMCD). XRD data reveal a single-phase cubic structure with a strong crystallographic orientation along the (200) plane. Room temperature ferromagnetism is confirmed through isothermal hysteresis as well as temperature dependent magnetization measurements, which clearly show the ferromagnetic Curie temperature occurring at least above 350 K. The Fe L3,2 edge NEXAFS spectra for both Fe-doped thin films exhibit mixed valent Fe2+/Fe3+ states, whereas Ce M5,4 edge shows the 4+ state of Ce, throughout the doping. With the increase in Fe doping, Fe2+ state increases and a simultaneous decrease in magnetization value is also observed. The XMCD signal of both samples reveals the ferromagnetic ordering of substituted Fe ions in the ceria matrix. Our results indicate that ferromagnetism is intrinsic to the ceria system and is not due to any secondary magnetic impurity.  相似文献   

2.
M. Sultan 《Materials Letters》2009,63(21):1764-1766
Cu-ferrite films were deposited on glass substrates by RF-magnetron sputtering in pure Ar and mixture of (Ar + O2) environment. The XRD studies of the as-deposited films indicate nanocrystalline cubic spinel structure. The observed increase in the intensity of (400) line at the expense of (220) line with increase in O2 content is ascribed to the change in distribution of Cu and Fe-ions among tetrahedral A-site and octahedral B-sites. The highest saturation magnetization (MS) of 264 emu/cm3 (in-plane) and 188 emu/cm3 (out of-plane) was obtained for the as-deposited films in pure Ar. The high deposition rate in reducing atmosphere leads to the formation of Cu+ ions which prefer occupation of the A-site in the spinel structure displacing Fe3+ cations to occupy the B-sites giving rise to the change in cation distribution among A and B-sites and consequently leading to high value of MS. The decrease in MS value with increase in oxygen content is ascribed to the decrease in film growth rate and Cu+ concentration which allow the cations to take up their preferable sites. The observed change in the film properties with environment is due to the presence of multivalent copper and iron ions with differing site preferences.  相似文献   

3.
Fe-doped and Fe-Ga co-doped ZnO diluted magnetic semiconductor thin films on quartz substrate were studied. Rapid annealing enhanced the ferromagnetism (FM) of the films grown in Ar/O2. All the films grown in Ar are n-type and the carrier concentration could increase significantly when Ga is doped. The state of Fe in the films was investigated exhibiting Fe3+. Magnetic measurements revealed that room temperature ferromagnetism in the films were doping concentration dependent and would enhance slightly with Ga doping. The origin of the observed FM is interpreted by the overlapping of polarons mediated through oxygen vacancy based on the bound magnetic polaron model.  相似文献   

4.
NixFe100−x films with a thickness of about 200 nm were deposited on SiO2/Si(1 0 0) substrates at room temperature by DC magnetron co-sputtering using both Fe and Ni80Fe20 targets. Compositional, structural, electrical and magnetic properties of the films were investigated. Ni76Fe24, Ni65Fe35, Ni60Fe40, Ni55Fe45, Ni49Fe51 films are obtained by increasing the sputtering power of the Fe target. All the films have a fcc structure. Ni76Fe24, Ni65Fe35, Ni60Fe40 and Ni55Fe45 films grow with crystalline orientations of [1 1 1] and [2 2 0] in the direction of the film growth while the Ni49Fe51 film has the [1 1 1] texture structure in the direction of the film growth. The lattice constant of the film increases linearly with increasing Fe content. All of the films grow with thin columnar grains and have void networks in the grain boundaries. The grain size does not change markedly with the composition of the film. The resistivity of the film increases with increasing Fe content and is one order of magnitude larger than that of the bulk. For all the films the magnetic hysteresis loop shows a hard magnetization. The Ni76Fe24 film has the lowest saturation magnetization of 6.75×10−2 T and the lowest saturation field of 8.36×104 A/m while the Ni49Fe51 film has a largest saturation magnetization of 9.25×10−2 T and the largest saturation field of 1.43×105 A/m.  相似文献   

5.
Ceria nanoparticles were synthesized by hydrolysis of cerium nitrate in basic medium. The cubic fluorite structure of ceria was confirmed by XRD. From TEM studies ceria nanoparticles were found to be spherical in shape with an average diameter of 5 nm. The prepared nanoparticles have a predominant orientation along (2 2 2) crystallographic plane. Oxygen vacancies and Ce3+ lead to the lattice expansion and strain in CeO2. Peak asymmetry and broadening of Raman active mode peak further confirms the presence of these defects. Total concentration of oxygen vacancies that are present in the ceria nanocrystallites is calculated to be 1.234 × 1020 cm−3. These oxygen vacancies and ceria related defects result in an effective red shifting of the band gap by changing its structural regularity. The visible luminescence peaks are also caused by these Ce3+ and oxygen vacancy centers.  相似文献   

6.
Thin films of indium tin oxide (ITO) sputter-deposited by dc-plasma containing deuterium on glass substrate without any heat treatments exhibited gradual lowering in electrical resistivity with increasing the deuterium content [D2] in plasma gas by 1% and then demonstrated a jump in resistivity by further increase of [D2] than 1%. X-ray photoelectron spectroscopy revealed that hydroxyl-bonded oxygen in ITO grew continuingly with [D2]. Deuterium positioned at the interstitial site increased almost quantitatively with increasing [D2]. Rutherford backscattering spectroscopy showed gradual reduction in the oxygen content of ITO with increasing [D2] by 1% and then demonstrated an abrupt increase of the oxygen content with the increase of [D2] than 1%. The films with [D2] < 1% were oxygen deficient, but those with [D2] > 1% were excess of oxygen. The most oxygen deficient film of [D2] = 1% was the most conductive. Behavior in the resistivity with [D2] looks parallel to that in the oxygen content. A lower resistivity of the films corresponded well to oxygen vacancy rather than hydrogen interstitial.  相似文献   

7.
8.
The effect of the base pressure on the incorporation of oxygen into reactively magnetron-sputtered metal-nitride films has been investigated. A UHV sputtering system with a base pressure of less than 10−6 Pa was used to examine the relationship between a deliberately introduced background pressure of oxygen and a measured oxygen content in the sputter-deposited TiN films. The results showed that with an oxygen partial pressure of 10−4 Pa, the deposited TiN was found to include 10-20 at.% of oxygen when measured by the technique of X-ray photoelectron spectroscopy (XPS). When no oxygen was admitted into the system, no trace of oxygen could be detected in the deposited TiN films. The incorporation mechanism is discussed in terms of the coverage-dependent sticking probabilities of O2 and N2 on a Ti metal surface.  相似文献   

9.
Tin-doped indium oxide (ITO) thin films were deposited on glass substrates at various oxygen flow rates using a planar magnetron sputtering system with facing targets. In this system, the strong internal magnets inside the target holders confine the plasma between the targets. High resolution transmission electron microscopy revealed a combination of amorphous and crystalline phases on the glass substrate. X-ray photoelectron spectroscopy suggested that the decrease in carrier concentration and increase in mobility were caused by a decrease in the concentration of Sn4+ states. The electrical and optical properties of the ITO films were examined by Hall measurements and UV-visible spectroscopy, which showed a film resistivity and transmittance of 4.26 × l04 Ω cm, and > 80% in the visible region, respectively.  相似文献   

10.
The Cu2O thin films were prepared on quartz substrate by reactive direct current magnetron sputtering. The influences of oxygen partial pressure and gas flow rate on the structures and properties of deposited films were investigated. Varying oxygen partial pressure leads to the synthesis of Cu2O, Cu4O3 and CuO with different microstructures. At a constant oxygen partial pressure of 6.6 × 10− 2 Pa, the single Cu2O films can be obtained when the gas flow rate is below 80 sccm. The as-deposited Cu2O thin films have a very high absorption in the visible region resulting in the visible-light induced photocatalytic activity.  相似文献   

11.
Paper presents luminescence spectra and time resolved spectra of KMgF3:Eu2+ system obtained at different temperatures and pressures, under excitation with 325 nm. At temperatures between 200 K and 292 K the spectra consist of sharp line peaked at 27,830 cm−1 related to 6P7/2 → 8S7/2 transition in Eu2+ accompanied by the phonon sideband. Under pressure the red spectral shift with the rate equal to −0.6 cm−1/kbar is observed. Luminescence decay is single-exponential with the lifetime equal to 5.2 ms independent of pressure and temperature. The emission spectra obtained at temperatures lower than 125 K consist of 5 sharp lines peaked at 27,590 cm−1, and 27,670 cm−1, 27,722 cm−1, 27,766 cm−1 and 27,809 cm−1, that relative intensity depends on temperature. Pressure shift of these lines was found to be equal to −0.6 cm−1/kbar; the same as 6P7/2 → 8S7/2 transition in Eu2+, whereas their lifetime is shorter and is equal to 0.7 ms at 100 K. These new lines disappear at temperature greater than 200 K. We tentatively related them to the luminescence of Eu2+-F center (fluorine vacancy with electron) complex.  相似文献   

12.
The influence of Co2+ ions content on structure and sensing properties of Ni1−xCoxFe2O4 (x = 0.25, 0.5, 0.75) thin films deposited on glass substrates by spin coating is presented. Structural characterization evidenced thin films with cubic spinel structures and morphologies dependent on cobalt content. Repartition of cations in spinel tetrahedral and octahedral sites was determined and was found that the presence of Co2+ ions in octahedral sites favor the formation of Fe2+ species. The sensitivity to some reducing vapor gases (acetone, liquefied petroleum gas LPG, ethyl alcohol and methyl alcohol) was investigated and was found that thin films with x = 0.75 exhibit high sensitivity to ethyl alcohol and thin films with x = 0.25 have high sensitivity to acetone. This sensitivity largely depends on the temperature and test gas concentration and was related to the Fe2+ species formed in octahedral sites.  相似文献   

13.
We present a new method to improve the oxygen flux properties and stability of Ba0.5Sr0.5Co0.8Fe0.2O3 − δ tube membrane using a thin layer of La0.6Sr0.4Ti0.3Fe0.7O3 − δ as protective coatings. The first relevant result is that the La0.6Sr0.4Ti0.3Fe0.7O3 − δ protective layer had an extraordinary positive effect on improving the oxygen permeation flux of the tubular Ba0.5Sr0.5Co0.8Fe0.2O3 − δ membranes. La0.6Sr0.4Ti0.3Fe0.7O3 − δ-coated Ba0.5Sr0.5Co0.8Fe0.2O3 − δ tubular membrane showed the highest oxygen permeability with the flux reaching ~ 3 ml cm−2 min−1 (oxygen purity > 99%) at 950 °C in static atmospheric pressure through a 1.0 mm thick membrane.  相似文献   

14.
In this work, microstructural and physical properties were studied in the tin oxide films deposited by thermal evaporation of Sn films on stainless steel substrates followed by in situ D.C. plasma oxidation at 200 °C substrate temperature. The surface properties were studied by scanning electron microscopy, X-ray diffraction, atomic force microscopy and four-point probe electrical resistivity. The typical calculated grain size of the films deposited by thermal evaporation was between 28 nm and 66 nm and the texture structure was found to be dependent on the thermal deposition pressure. A cassiterite structure of SnO2 was produced by D.C. plasma oxidation with the main diffraction peaks of the (101), (200), (211), (310) and (221) planes at the 25% and 50% O2 partial pressure conditions. However, at 12.5% O2 partial pressure oxidation conditions, amorphous tin oxide structure and crystalline SnO phases were detected. Increasing thermal deposition pressure resulted in preferential texture formation at (211) and (310) planes. The surface structure investigation of the produced films by SEM and AFM studies showed large SnO2 islands with approximately 1.0 μm and 1.5 μm sized nodules, and they are called as grape-like structures. The grape-like grains possess nano grains, which are between 20 nm and 30 nm in diameter calculated by Scherer's formula. The grape-like grains were seen to be separated by large cavities and the size of these cavities and nano grains was seen to be larger when the O2 partial pressure is increased. The four-point probe resistivity of the films, grown at different oxidation temperatures, decreased with the increase in oxygen partial pressure. The values of resistivity for SnO2 phase were measured as low as 10−5 Ω-cm and observed to decrease with increasing thermal deposition pressure and oxygen partial pressure.  相似文献   

15.
Zn0.92Co0.08O thin films were fabricated on p-type Si (100) and quartz substrates by pulsed laser deposition using a ZnCoO ceramic target. The structural and magnetic properties of the films were characterized by field emission scan electronic microscopy, x-ray diffraction, x-ray photoemission spectroscopy, UV-visible transmission spectra, extended x-ray absorption fine structure spectroscopy and physical property measurement system. Substitutional doping of Co2+ in ZnO lattice is demonstrated in the films. The as-deposited Zn0.92Co0.08O thin film displayed intrinsic room temperature ferromagnetism with saturation magnetization (Ms) of ~ 0.20μB/Co. The corresponding Ms increased to ~ 0.23μB/Co when annealed in vacuum and further to ~ 0.42μB/Co after annealed in hydrogen. In turn, the Ms dropped to the value of ~ 0.13μB/Co after annealed in oxygen. Our studies indicate that oxygen vacancy density plays a key role in mediating the ferromagnetism of the diluted magnetic semiconductor films.  相似文献   

16.
AC conductivity, density related and magnetic properties are reported for Ni1 − xZnxFe2O4 ferrites with the variation of zinc concentration prepared by the standard solid state reaction technique. X-ray powder diffraction patterns confirmed the spinel structure of the prepared compounds. AC conductivity (lnσac) increases from − 10.045 (S/m) to − 3.781 (S/m) with the increase in zinc concentration from 0.0 to 1.0 at the frequency of 1 kHz. Lattice parameters, sintered density and grain size increase whereas X-ray density and porosity decrease with the increase in zinc concentration. Saturation magnetization increases with the increase in zinc concentration up to x = 0.4 and after that it decreases with the increase in zinc concentration. Remanence magnetization and magnetic moment almost have the similar trend as that of saturation magnetization. Yafet-Kittel angles increase with the increase in zinc concentration. The possible reasons responsible for these changes are undertaken.  相似文献   

17.
A novel approach to synthesize a single-phase orthorhombic perovskite lanthanum chromite LaCrO3 clusters doped with Sm3+ and Sr2+ ions via gel combustion route was reported. The producing materials were synthesized using metal nitrates as oxidizers and triethanol amine (TEA), N-butyl amine (NBA) or ethylene diamine (EDA) as a fuel. The effect of the annealing temperature, type of organic fuel and the variation of the samarium and/or strontium substitution and its impact on crystal structure, crystallite size, microstructure and magnetic properties of the LaCrO3 powders formed was systematically studied. The results revealed that a well crystalline single phase of pure LaCrO3 can be achieved at annealing temperature from 800 to 1000 °C for 2 h. Moreover, each organic carrier materials exhibited a different degree of effectiveness in the synthesis of the mixed oxide powders. The crystal structure was influenced by doped Sm3+ and/or Sr2+ ions. The crystallite size of the produced powders was increased with the increase the annealing temperature, increasing the Sm3+ ion and the decrease of Sr2+ ion substitution. The microstructures of the produced powders were found to be nanoclusters octahedra-like shaped. The saturation magnetization of the LaCrO3 powders increased continuously with an increase in the Sm3+ ion concentration and it decreased with an increase in the Sr2+ ion up to 0.3 at annealing temperature of 1000 °C for 2 h. The maximum saturation magnetization (0.279 emu/g) was achieved at the Sm3+ ion molar ratio 0.3 and annealing temperature 1000 °C. Moreover, wide coercivities can be obtained at different synthesis conditions (49.25 to 522  Oe).  相似文献   

18.
The solid-solid interactions between nanosized pure and NiO-substituted ferric and titanium(IV) oxides have been investigated using XRD technique and microstructure studies, also magnetic properties were studied using vibrating samples magnetometer (VSM). The amounts of substituting Ni2+ were x = 0, 0.2, 0.4, 0.6, 0.8 and 1 mole. A mixture equimolar proportions of finely powdered Fe2O3 and TiO2 were mixed with NiO, ball milled, compressed at 250 kg/cm2 and fired at 1200 °C for 4 h.The obtained results showed that with substituting Ni2+ concentration x = 0 only Fe2TiO5 phase is present (∼80 nm) which showed a very small saturation magnetic flux density (Bs), remnant magnetic flux density (Br) and the maximum energy product (BH)max. By the addition of x = 0.2 NiO, new phases were observed NiTiO3 and NiFe2O4 of crystallite sizes 160 and 110 nm, respectively. By the increase of substituting Ni2+ concentration the NiTiO3 and NiFe2O4 phases increased on the expense of Fe2TiO5 up to x = 0.4, then the increase in substituting Ni2+ concentration led to a decrease in Fe2TiO5 and NiTiO3 while NiFe2O4 increases which results in a great improvement of magnetic properties.All samples exhibit a catalytic activity towards H2O2 decomposition and the values of rate constant increase with increasing amount of Ni2+ substituting. The most acidic active sites are shown by specimens substituted with x = 0 this concludes that H2O2 decomposition is not favored on acidic active sites.  相似文献   

19.
CoFe2−xSmxO4 (x = 0–0.2) nanofibers with diameters about 100–300 nm have been prepared using the organic gel-thermal decomposition method. The composition, structure and magnetic properties of the CoFe2−xSmxO4 nanofibers were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductive coupling plasma mass analyzer and vibrating sample magnetometer. The CoFe2−xSmxO4 (x = 0–0.2) nanofibers obtained at 500–700 °C are of a single spinel structure. But, at 800 °C with a relatively high Sm content of 0.15–0.2 the spinel CoFe2−xSmxO4 ferrite is unstable and the second phase of perovskite SmFeO3 occurs. The crystalline grain sizes of the CoFe2−xSmxO4 nanofibers decrease with Sm contents, while increase with the calcination temperature. This grain reduction effect of the Sm3+ ions doping is largely owing to the lattice strain and stress induced by the substitution of Fe3+ ions with larger Sm3+ ions in the ferrite. The saturation magnetization and coercivity increase with the crystallite size in the range of 8.8–57.3 nm, while decrease with the Sm content from 0 to 0.2 owing to a smaller magnetic moment of Sm3+ ions. The perovskite SmFeO3 in the composite nanofibers may contribute to a high coercivity due to the interface pinning, lattice distortion and stress in the ferrite grain boundary fixing and hindering the domain wall motion.  相似文献   

20.
Ni0.45Zn0.55Fe2O4 (40 nm) single-layer and Fe50Mn50 (25 nm)/Ni0.45Zn0.55Fe2O4 (40 nm) bilayer films were prepared on Si(111) substrates by radio frequency magnetron sputtering at room temperature, and the influence of FeMn underlayer on the microstructure and magnetic property of Ni-Zn ferrite film has been investigated. It was found that the introduction of Fe50Mn50 underlayer resulted in a decrease from 7.1 to 3.1 kA/m in coercivity and increase from 0.22 to 0.60 in residual magnetization ratio of the ferrite film. The complex permeability μ = μ′ − iμ″ values of the films were measured at a frequency of up to 5 GHz. An obvious resonance peak at about 1.65 GHz of the bilayer film appeared in the permeability spectrum. The reason has been researched preliminarily and was ascribed to the change of the film's microstructure with FeMn underlayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号