共查询到20条相似文献,搜索用时 15 毫秒
1.
采用粉末冶金技术制备了孔隙和HA相均呈梯度分布的双梯度多孔HA/Mg复合材料。研究了造孔剂及HA含量与分布对复合材料孔隙度和抗压强度的影响,观察了烧结产物的显微组织,测量了复合材料的耐腐蚀性能。结果表明,随着中间层造孔剂含量的增加,双梯度多孔HA/Mg复合材料的孔隙度增加、抗压强度降低。随着表层HA含量的增加,梯度多孔HA/Mg复合材料的孔隙度升高,抗压强度降低。耐腐蚀性分析表明,随着孔隙度增加,复合材料的耐腐蚀性降低,与梯度多孔Mg材料相比,双梯度HA/Mg复合材料具有更好的耐腐蚀性能。随着表层HA含量的增加,腐蚀速率降低,溶液的pH值缓慢增加。 相似文献
2.
采用高能球磨法制备了纳米CeO2/Zn复合粉末,用粉末冶金真空热压烧结制备了纳米CeO2/Zn复合材料块体;利用X射线衍射(XRD)、场发射扫描电镜(FESEM)等测试分析手段,对复合粉末、块体组织结构进行了研究;比较了不同纳米CeO2含量的Zn复合材料的耐蚀性和硬度并优选出耐蚀性和硬度最好时CeO2的最佳含量范围.结果表明,纳米CeO2颗粒的加入能显著提高金属的耐蚀性、硬度和金属结构的致密均匀性.并于纳米CeO2含量在1%时显示了最佳的耐蚀性、硬度和微观组织结构. 相似文献
3.
通过熔炼搅拌方法将纳米羟基磷灰石颗粒加入到Mg-Zn-Ca合金中得到Mg-Zn-Ca/HA复合材料,研究了该复合材料的显微结构和耐腐蚀性。结果表明,当Zn含量为3%时该复合材料显微组织是最佳的。当HA含量为1%时,复合材料的耐腐蚀性能最好。 相似文献
4.
为了提高铜和石墨烯之间的界面结合强度,采用化学镀的方法使石墨烯表面均匀包裹纳米铜颗粒,然后利用粉末冶金工艺制备铜/石墨烯块体复合材料。本文研究了石墨烯含量对复合材料硬度和致密度的影响,并通过HSR-2M高速往复摩擦磨损试验机研究了铜/石墨烯块体复合材料的摩擦磨损性能。结果表明:石墨烯的加入对铜/石墨烯块体复合材料的硬度有显著的提高,但致密度随石墨烯含量的增加而降低,块体复合材料的摩擦系数和磨损率均低于未增强的纯铜。 相似文献
5.
采用粉末冶金技术制备梯度多孔Fe-3Ag/HA复合材料,研究了造孔剂分布、烧结温度、HA含量对梯度多孔Fe-3Ag/HA复合材料的孔隙度和力学性能的影响。观察了梯度多孔Fe-3Ag/HA复合材料的显微组织及腐蚀后的微观形貌,测量了梯度多孔Fe-3Ag/HA复合材料的物相组成和耐腐蚀性能。结果表明,随着造孔剂和HA含量增加,烧结产物的孔隙度增加,抗压强度减少。提高造孔剂含量,梯度多孔Fe-3Ag/HA复合材料的耐腐蚀性能明显降低;提高HA含量,该复合物的耐腐蚀性能比梯度多孔Fe-3Ag略有增加,但是其腐蚀速率明显高于梯度多孔纯Fe试样。在模拟人工体液中浸泡3天后,梯度多孔Fe-3Ag/HA复合材料比梯度多孔Fe-3Ag合金表面沉积了更多的HA,这表明HA相有诱导模拟人工体液中Ca和P离子沉积的能力,与Fe基合金相比该复合材料具有更好的生物相容性。 相似文献
6.
7.
8.
9.
HA/Mg生物复合材料的制备及其腐蚀特性 总被引:3,自引:0,他引:3
以纯镁为基体,以化学沉淀法制备的针状羟基磷灰石(HA)粉体为增强体,采用粉末冶金工艺制备了不同HA含量的HAp/Mg复合材料。对所制备复合材料的组织、物相以及在模拟体液(simulated body fluid,简称SBF)中的腐蚀行为进行了研究。结果表明:HA在烧结过程中与镁基体没有发生明显反应:HA对HA/Mg复合材料的密度、硬度及强度产生了不同程度的影响;同时HA加入可以提高复合材料在模拟体液中的抗腐蚀能力和抑制模拟体液的pH值增加,通过调整HA的体积分数可以调控复合材料的力学性能和腐蚀速率。 相似文献
10.
以碳纳米管(CNTs)、碳化硅(SiC)粉体、锌(Zn)粉和CuSO_4·5H_2O为主要原料,用化学镀的方法制备CNTs /Cu复合粉体,再采用非均相沉淀法制备CNTs/SiC/Cu复合粉体.在750 ℃、100 MPa的制度下进行真空热压烧结后制得CNTs/SiC/Cu复合材料,其中Cu的含量(体积分数,下同)为70%,CNTs的含量(体积分数, 下同)分别为0,3%,5%,8%,12%.利用XRD、SEM分析样品的物相组成和显微结构;利用阿基米德排水法、显微硬度计、三点弯曲法测试了复合材料的密度、显微硬度和抗弯强度.结果表明,随着碳纳米管含量的增加,CNTs/SiC/Cu复合材料的密度、显微硬度和抗弯强度等性能发生相应变化,其中,抗弯强度呈现逐渐升高趋势.与未添加碳纳米管的30SiC/70Cu复合材料相比,添加12%CNTs的12CNTs/18SiC/70Cu 样品,抗弯强度提高了21.45 MPa. 相似文献
11.
石墨烯/银纳米复合材料的制备及抗菌性能研究 总被引:1,自引:0,他引:1
采用改进的Hummers法制备氧化石墨(GO),加入一定量的聚乙烯亚胺和硝酸银(PEI-Ag+)配位复合物,通过自组装法组装,利用硼氢化钠的还原性,制备石墨烯/银纳米复合材料。用紫外可见吸收光谱(UV-Vis)、红外吸收光谱(FT-IR)、X射线衍射(XRD)、循环伏安法(CV)、扫描电镜(SEM)、拉曼光谱(Raman)等手段对所制备的石墨烯/银纳米复合材料进行表征。以金黄色葡萄球菌和大肠杆菌为模型对纳米复合材料的抗菌性能进行研究。结果表明:银纳米粒子负载在石墨烯表面形成石墨烯/银纳米复合物材料,石墨烯/银纳米复合材料对金黄色葡萄球菌和大肠杆菌生长具有较好的抑制作用,且抗菌性能稳定。当石墨烯/银纳米复合材料浓度为4和15 mg/m L时,分别对金黄色葡萄球菌和大肠杆菌的抑菌效果好。 相似文献
12.
13.
14.
采用剪切搅拌铸造结合热挤压工艺制备了1HA/Mg-3Zn-0.2Ca(质量分数,%)复合材料,研究了固溶及时效处理对挤压态1HA/Mg-3Zn-0.2Ca复合材料显微组织、力学性能及电化学腐蚀行为的影响。结果表明:挤压态复合材料经固溶处理(T4)后,第二相数量减少,晶粒尺寸增大,屈服强度降低,但延伸率和耐蚀性能有所提高。固溶超过3 h后,由于晶粒尺寸过分长大耐蚀能力又出现下降;固溶后时效处理(T6),复合材料屈服强度提高,耐蚀性变化不大。因此,对挤压态HA/Mg-Zn-Ca复合材料进行适当的固溶及时效处理可以提高复合材料的耐蚀性及延伸率。 相似文献
15.
《金属学报》2017,(10)
为改善复合材料中纳米增强体易团聚的问题,将陶瓷纳米棒HA进行表面包覆Mg O改性处理(m-HA),并采用高熔体剪切搅拌技术制备Mg-3Zn-0.8Zr合金(MZZ)、Mg-3Zn-0.8Zr/1HA复合材料(MZZH)和Mg-3Zn-0.8Zr/1m-HA复合材料(MZZMH)。研究了m-HA对Mg-Zn-Zr/HA复合材料微观组织、力学性能和耐蚀性能的影响。结果表明,陶瓷纳米棒HA的加入细化了MZZ合金的组织,提高了MZZ合金的力学性能和电化学耐蚀性能。与MZZH相比,MZZMH的晶粒更加细小均匀,陶瓷纳米棒在基体中的分布更均匀。挤压态MZZMH的力学性能较MZZH显著提高,其硬度、屈服强度、抗拉强度和延伸率分别达到92 HV、291 MPa、325 MPa和8.62%。MZZMH的自腐蚀电位比MZZH高59 m V,MZZMH的腐蚀速率较MZZH降低,在SBF中浸泡7 d后稳定在5 mm/a。腐蚀机理的不同使MZZMH复合材料的耐蚀性能优于MZZH。因此,MgO改性可有效促进HA纳米棒的均匀分布,进而显著提高MZZMH的力学性能和耐蚀性。 相似文献
16.
《金属热处理》2017,(1)
将HA粉末添加质量比为70%的Ti粉,压制成坯后在大气环境下900℃、1000℃、1100℃保温60 min烧结制备HA/Ti复合材料,用金相显微镜(OM)、扫描电子显微镜(SEM)和X射线衍射仪(XRD)对复合材料进行组织、形貌和结构表征,采用模拟体液浸泡(SBF)进行体外生物活性表征。结果表明:材料物相主要为α-Ti、Ca_(10)(PO_4)_6(OH)_2、TiO_2和β-Ca_3(PO_4)_2;当温度达到1000℃时有CaTiO_3生成,当温度升高到1100℃时生成CaO;1100℃时,块状TiO_2及α-Ti弥散分布于由陶瓷相等形成的网状结构中。CaO、TiO_2的生成和网状微孔结构对促进HA异质形核有重要作用,经14天SPF溶液浸泡后表面形成利于成骨的Ca_(10)(PO_4)_6(OH)_2、CaTiO_3和β-Ca_3(PO_4)_2。孔径尺寸与允许骨组织长入的临界孔径尺寸相当。 相似文献
17.
Zn/纳米CeO2复合镀层的制备及电化学性能研究 总被引:1,自引:1,他引:1
纳米粒子具有一系列特殊的性能,采用电镀的方法在镀层中添加纳米颗粒可改善镀层的某些性能.利用纳米稀土氧化物在基体相中的补强作用以及可能赋予镀层某些新性能的特点,采用复合电镀的方法制备了Zn/纳米CeO2复合镀层,分析了镀液中CeO2颗粒悬浮量、阴极电流密度和镀液温度等因素对复合镀层中纳米CeO2复合量和膜层质量的影响,用正交试验法优选了各工艺参数.采用电化学方法研究了Zn/纳米CeO2复合镀层的耐蚀性.结果表明:复合镀层晶粒细小,平整光滑,显微组织均匀、致密,且镀层耐蚀性能比相同电镀条件下制得的纯锌镀层有所提高. 相似文献
18.
采用机械球磨法对羟基磷灰石(HA)/超高分子量聚乙烯(UHMWPE)粉末进行混合处理,通过热压将混合粉末制成复合材料.通过X射线衍射、SEM观察及力学性能测试对混合粉末及复合材料进行微观组织和力学性能的分析.结果表明:球磨使HA颗粒得到了细化,而UHMWPE有粗化的趋势,同时HA/UHMWPE混合粉末组织更加均匀.球磨后HA没有发生分解,也没有新的物质产生.复合材料断面形貌呈网状结构,球磨时间越长,这种网状组织越均匀.随着球磨时间的增加,HA/UHMWPE复合材料的拉伸强度、冲击强度呈上升趋势.经球磨时间40 h后的复合材料具有较好的综合力学性能,同时又具有较理想的微观组织. 相似文献
19.
采用电子束物理气相沉积(EB-PVD)法制备了Cu/Mo-Ti微叠层复合材料,采用XRD、SEM和EDS法对材料的物相、微观组织结构和成分进行表征,利用3010型拉伸试验机和直流低电阻测试仪对材料的力学性能和电性能进行了测试。结果表明:Cu/Mo-Ti微叠层复合材料室温最大抗拉强度为271 MPa,导电率为89%IACS;当温度从25℃升高到300℃,材料抗拉强度由271 MPa降低到131 MPa,伸长率由3.4%升高到8%;在拉伸过程中,材料以分层断裂形式断裂。 相似文献
20.
目的提高C/C复合材料在超高温下的抗烧蚀性能。方法采用化学气相沉积法,在C/C复合材料表面制备SiC过渡层,然后以惰性气体保护等离子喷涂工艺在带有SiC过渡层的C/C材料表面制备W涂层,研究所制备的W-SiC-C/C复合材料的微观形貌与结构特征。以200 kW超大功率等离子焰流,考核W-SiC-C/C材料的抗烧蚀性能,并与无涂层防护的C/C材料进行对比分析。结果W涂层主要为层状的柱状晶结构。W涂层与SiC过渡层、过渡层与基体界面呈镶嵌结构,结合良好。SiC过渡层阻止了W、C元素相互迁移与反应。在驻点压力为4.5 MPa、温度约5000 K、热流密度为36 MW/m2的烧蚀条件下,当烧蚀时间小于10 s时,涂层对C/C材料起到了较好的保护作用,W涂层发生氧化烧蚀,基体未发现烧蚀,平均线烧蚀率为0.0523 mm/s;当烧蚀时间超过15 s后,涂层防护作用基本失效,基体C/C材料发生烧蚀现象。结论以W涂层、SiC过渡层为防护的C/C复合材料,能够适用于短时间超高温的烧蚀环境,如固体火箭发动机等。W涂层的熔融吸热、氧化耗氧以及SiC过渡层的氧化熔融缓解涂层热应力和氧扩散阻碍的联合作用,提高了C/C材料的抗烧蚀性能。 相似文献