首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于传统水化热模型计算水泥水化热,建立矿物掺合料水化热计算公式;采用直接法测定掺粉煤灰、矿渣条件下普通硅酸盐水泥和低热水泥基胶凝材料体系1~7 d水化热。计算结果与实测结果对比表明:矿物掺和料水化热双指数计算公式可表征普通硅酸盐水泥和低热水泥基胶凝材料体系下粉煤灰和矿渣1~7 d水化热,可采用此法结合水泥水化热计算方法进行以水化热作为目标函数的胶凝材料体系优化设计。  相似文献   

2.
为研究低热硅酸盐水泥与大掺量矿物掺合料胶凝材料体系间水化放热规律方面的差异,采用直接法测定两者的水化放热过程,根据计算出的水化放热曲线及水化速率曲线,分析了两者在水化放热规律方面的差异;并采用Krstulovic-Dabic模型3个时期的积分方程进一步对比分析两者在水化进程方面的差异。研究结果表明试验方案中掺有矿粉的胶凝材料体系水化热前期低于低热硅酸盐水泥,而后期高于低热硅酸盐水泥;在水化放热规律方面,掺入一定掺量的矿物掺合料后,与低热硅酸盐水泥相比,初终凝时间延后,加速期与减速期延长;在结晶成核与晶体生长(NG)时期,n值越大,水化阻力越大,初凝时间相对推后,kNG值越大,水化速率越快,加速期越短,终凝时间相对提前,在相边界反应时期(I)与扩散时期(D),kI,kD越大,水化速率越快,减速期越长。研究结果为改善大体积混凝土的温度防裂性能提供参考。  相似文献   

3.
为了评价几种传统水化热计算方法对低热水泥的适用性,进而提出低热水泥胶凝体系水化热的计算公式,采用直接法测定了不同掺量粉煤灰、矿渣条件下的低热水泥胶凝体系7 d水化热,对比应用矿物成分法、折算公式法、数值拟合法算得相应结果,调整各模型参数并对其计算精度进行评价分析。研究结果表明:矿物成分法仅能计算特征龄期下水泥水化热,算得结果与试验数值差距较大;折算公式法用于计算单一掺合料下胶凝材料7 d水化热时所得结果准确度较高;数值拟合法适用于单掺、复掺不同掺量矿物掺合料的低热水泥胶凝体系,该体系下粉煤灰、矿渣的最终水化热分别为126.6 J/g和172.4 J/g。研究成果可为大体积混凝土的绝热温升计算提供基础数据参考。  相似文献   

4.
为了对低热硅酸盐水泥胶凝体系力学和热学综合性能进行评价,从而为低热水泥在大体积混凝土中的应用提供参考,以胶凝材料不同龄期抗压强度、抗折强度和水化热为指标,通过限定上限/下限线性计算规则建立评价目标函数,计算不同矿物掺合料下的低热水泥胶凝体系综合性能满意度,并绘制满意度等值线图。研究结果表明:低热水泥胶凝体系综合性能满意度等值线分布可以近似看作系列同心椭圆线;粉煤灰掺量在区间、矿渣粉掺量在区间范围内其综合性能满意度较高,具备较好的早强低热性能。该性能评价函数以及满意度等值线图的联合运用,为复合胶凝材料体系力学及热学综合性能评价提供了新的思路。  相似文献   

5.
三峡二期工程选用的 4种高效减水剂对高掺优质粉煤灰 ( 级 )的三种水泥水化热的影响规律 ,以及它对不同厂家生产的中热和低热水泥的适应性。并就双掺后的水泥水化放热机理进行了探讨。  相似文献   

6.
为研制水工用黏土基胶凝材料,以航道护岸黏性弃土为主要原料,以试件抗压强度、劈裂抗拉强度及水稳定性作为控制指标,进行了水泥、石膏、矿粉等无机结合料掺量对黏土基胶凝材料力学性能影响的试验研究,并采用扫描电子显微镜分析试件的微观结构。结果表明:在黏性弃土、水泥、矿粉、石膏及石灰掺量分别为65%、18%、10%、2%和5%时,可获得28 d抗压强度达25.6 MPa、浸水强度达24.1 MPa、劈裂抗拉强度达2.5 MPa的黏土基胶凝材料;在不同的水化龄期,黏土基胶凝材料均生成了C-S-H凝胶等水泥基胶凝物质,这些产物相互交织、紧密结合,有效提高了材料的力学性能;该黏土基胶凝材料强度高、水稳定性好,可满足水运工程应用要求。  相似文献   

7.
粉煤灰与磷矿渣对水泥水化热及胶砂强度的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
试验研究了单掺粉煤灰和复掺磷矿渣与粉煤灰(PF料)对水泥水化热及水泥胶砂强度的影响,结果表明:水泥水化热随粉煤灰和PF料掺量的增大而降低;与纯水泥相比,掺粉煤灰或PF料的水泥7 d水化热降低百分率均低于掺合料(粉煤灰、PF料)替代水泥的百分率;复掺PF料的胶砂抗压强度比单掺粉煤灰高,且PF料对延迟放热峰值出现时间比粉煤灰好。  相似文献   

8.
在富水情况下传统的普通硅酸盐水泥基注浆材料难以满足工程要求.以硫铝酸盐水泥与普通硅酸盐水泥作为复合胶凝材料,通过粘结剂(HPMC)对其改性,并以流动度、凝结时间、抗水分散性和强度等指标进行最优配比试验,结果表明:SAC和P.O改性复合胶凝材料凝结时间较短;随着HPMC掺量的增加,材料抗水分散性逐渐提高、强度逐渐下降;同时当水灰比大于0.5时,材料的抗水分散性开始降低.通过工程应用验证,该改性速凝抗水分散型注浆材料最佳配比为P.O 42.5与SAC比例6:4、水灰比0.45、HPMC掺量为胶凝材料质量的0.15%.  相似文献   

9.
以粉煤灰和天然火山灰分别作为掺合料,对比研究了对胶砂用水量、胶砂强度、胶材水化热的影响。结果表明:掺天然火山灰胶砂用水量较掺粉煤灰的高,胶砂强度较掺粉煤灰的低,胶凝材料水化热较掺粉煤灰的高,天然火山灰活性效应低于粉煤灰。  相似文献   

10.
通过外掺Na2SO4和K2SO4将低热硅酸盐水泥、中热硅酸盐水泥和普通硅酸盐水泥总碱含量调节至1.2%,并使K2O/Na2O (质量比)控制在0.4~13.7范围内,探讨了K2O/Na2O对3种水泥基材料收缩和开裂的影响。并基于微量热技术、电子显微镜技术和能谱技术,揭示了K2O/Na2O对不同水泥基材料收缩和开裂的影响机制。研究表明,随K2O/Na2O的增加,低热硅酸盐水泥和普通硅酸盐水泥的自收缩和干燥收缩增加,中热硅酸盐水泥的自收缩和干燥收缩先降低后增加,而不同水泥基材料开裂敏感性始终表现为增加。K2O/Na2O引起不同收缩特性的主要原因与水泥基材料水化进程有关,而不同的开裂敏感性,除与收缩性能相关外,还受水泥基材料水化产物水化硅酸钙(C-S-H)、氢氧化钙(CH)形貌及界面过渡区(ITZ)元素富集的影响。  相似文献   

11.
在以往的混凝土外加剂研究中,业界往往注重外加剂在改进混凝土强度、工作性以及初、终凝时间等方面的研究,而对于利用外加剂来优化水泥水化热曲线、延长水化热半熟龄期的研究却被忽视。该文从优化水泥水化放热曲线角度出发,配置了一种能有效削减水化热峰值、实现双峰型水化放热的新缓凝高效减水剂,并进行了水泥水化放热和混凝土绝热温升方面的对比试验,进行了混凝土温度场有限元仿真计算,发现优化后的水泥水化放热过程在同等通水条件下混凝土温升值可降低温升4.32℃,这一结果对水工大体积混凝土的温控防裂具有重要意义,是一个值得系统研究的学术点和技术点。  相似文献   

12.
分别采用水渗透压力法和快速氯离子直流电通量法,测试了由低热硅酸盐水泥和普通硅酸盐水泥配制的道路混凝土的渗透性能,并对导致两种测试方法结果不同的原因进行了分析.结果表明:低热水泥道路混凝土在28 d,60 d和90 d三个龄期的电通量值都大于普通硅酸盐水泥道路混凝土,抗渗性劣于普通硅酸盐水泥混凝土,差异较显著;水压法试验结果表明,28 d龄期低热水泥道路混凝土的抗渗性略逊于普通硅酸盐水泥道路混凝土,而60 d龄期后,则略优于普通硅酸盐水泥配制的道路混凝上.分析认为水压力渗透法能较真实地反映混凝土中的孔结构,电通量法的结果因受剑浆体材料及水化产物组成对氯离子固化的影响,在反映混凝土的抗渗件能或孔结构的差异方面存在一定的偏差.  相似文献   

13.
通过分别外掺Na2SO4(Na碱)和K2SO4(K碱)将低热硅酸盐水泥、中热硅酸盐水泥和普通硅酸盐水泥总碱含量均调节至0.8%和1.2%,探究了不同类型盐碱对不同水泥基材料自收缩和干燥收缩的影响,并基于微量热技术、孔结构分析技术和核磁共振技术,揭示了不同类型盐碱对不同水泥基材料自收缩和干燥收缩的影响机制。研究表明:①盐碱促进了不同水泥基材料的收缩。在相同盐碱含量下,低热硅酸盐水泥具有较低的自收缩率,普通硅酸盐水泥自收缩率最大,但普通硅酸盐水泥干燥收缩最小,中热硅酸盐水泥干燥收缩最大;②在不同水泥基材料中,K碱的促进作用高于Na碱,并随碱含量的增加而增加,当碱含量为0.8%时,K碱的促进作用为Na碱的1.1倍以上,当碱含量为1.2%时,K碱的促进作用为Na碱的1.3倍以上。微观试验表明,K碱较Na碱对水泥基材料收缩具有更高的促进作用,其机制在于K碱能更大程度促进水泥水化,提高影响收缩的<50 nm的孔含量,并与Al原子向水化硅酸钙(C-S-H)链中转移有关。  相似文献   

14.
在中国西部部分地区的水电工程建设中,传统矿物掺合料短缺,开展混凝土新型材料(如石粉)的工作性能研究很有必要。以掺砂板岩石粉多元胶凝体系为研究对象,研究了掺砂板岩石粉对胶凝体系热学、力学及收缩性能的影响,结合扫描电镜(SEM)和综合热分析仪(TG-DSC)分析了掺砂板岩石粉胶凝体系的水化产物及反应程度。试验结果表明:(1)掺入15%~55%砂板岩石粉的胶凝体系其水化热和强度小于纯水泥胶凝体系,且掺量越高,水化热和强度降幅越大;(2) 3~28 d掺砂板岩石粉的水泥胶砂强度增长明显,90~180 d强度增长缓慢;(3)掺砂板岩石粉的胶凝体系其自收缩变形可分为快速增长段(0~8.5 h)和缓慢增长段(8.5~60.0 h),适宜掺量砂板岩石粉的掺入有助于降低胶凝体系的自收缩变形,单掺35%砂板岩石粉的净浆体系自收缩减小17.6%;(4)砂板岩石粉对水泥熟料早期水化的加速效应明显,砂板岩石粉与硅粉复掺时,水泥熟料早期水化加速效应最为显著,且强度与水化热均高于单掺砂板岩石粉或复掺砂板岩石粉和粉煤灰的胶凝体系,可作为混凝土新型掺和料替代方案。  相似文献   

15.
混凝土水化热抑制剂作为新型的混凝土外加剂,具有减缓混凝土初期水化反应放热速率的作用。但由于缺乏明确的可行性分析,其在工程中的应用受到限制。通过拟合试验数据,获得不同水化热抑制剂掺量的混凝土热力学参数,并以水闸为例,采用数值模拟方式,研究水化热抑制剂对大体积混凝土温度场和应力场的影响。结果表明,水化热抑制剂的掺量达到胶凝材料含量的0.6%时,具有明显的降低温度和应力峰值作用,温控效果明显;而掺量较低,则无明显温控效果。水化热抑制剂降低温度和应力峰值的效果与结构厚度成反比,其对大体积薄壁结构的温控效果更为显著。作为一种温控手段,工程中可与其他温控措施相结合,提出更为合理且经济的温控方案。  相似文献   

16.
张家璐  曾力 《人民长江》2014,45(15):82-85
往水泥基胶凝材料中掺入石灰石粉虽可有效提高其早期强度和抗渗性,但同时会带来硫酸盐侵蚀问题。将掺有石灰石粉的水泥胶砂试件放入5%的Na2SO4溶液中进行长期浸泡腐蚀,然后测试试件强度,并对其进行XRD分析和SEM观察。研究结果表明:在硫酸盐侵蚀下,试件中生成石膏晶体造成试件劣化;侵蚀反应还造成碳铝酸钙水化产物的分解,促使试件腐蚀破坏;石膏膨胀和水化产物分解的共同作用是造成掺石灰石粉水泥基胶凝材料破坏的主要原因。  相似文献   

17.
总结分析了大体积混凝土易产生裂缝的原因及应对措施,指出使用低热硅酸盐水泥可有效改善大体积混凝土的抗裂性能。选取低热硅酸盐水泥与普通硅酸盐水泥开展试验对比分析,从水化热、抗压强度、混凝土收缩膨胀等方面阐述了低热硅酸盐水泥有利于提高混凝土抗裂能力的原因。并通过瀑布沟水电站工程和深溪沟水电站工程的实例,说明了将低热水泥应用于水工大体积混凝土是可行的,且具有很好效果。  相似文献   

18.
李明霞  杨华全  董芸 《人民长江》2012,(Z1):196-198
试验研究了单掺磷渣、粉煤灰,复掺磷渣与粉煤灰对水泥水化热的影响。研究结果表明,对于单掺磷渣,水泥水化热随磷渣的掺量增加而降低,但水泥水化热降低的比例小于磷渣掺量增加的比例。随着龄期的增长,7 d的水化热要明显大于3 d的水化热。龄期越长,水泥水化热随着磷渣的掺量增加而降低的比例越小。等量的粉煤灰(单掺)、磷渣与粉煤灰(复掺)在掺入水泥后的水化热和单掺磷渣的水化热相差不大,具有与单掺磷渣类似的规律性。  相似文献   

19.
利用X射线衍射(XRD)、热重(TG)、压汞法(MIP)、扫描电镜分析(SEM)等现代测试技术与方法对水泥-凝灰岩-粉煤灰复合胶凝材料硬化浆体微观结构特征进行测定和分析。结果显示:凝灰岩的掺入使得硬化浆体中引入了长石、水云母及低温型石英(α-SiO2)等晶相物质,其余水化产物与纯水泥样品基本相同;含有凝灰岩的水泥硬化浆体中Ca(OH)2含量降低幅度明显小于水泥-粉煤灰二元胶凝体系;随着养护龄期的延长,复合胶凝材料硬化浆体孔隙率逐渐降低,孔径逐步得到细化,到水化180 d时,各样品中最可几孔径的分布主要集中在4.5~50 nm,浆体结构朝着对耐久性有利的方向发展;凝灰岩颗粒特殊形貌引起的形态效应和微集料填充作用在水化初期显得较为明显;相比于同掺量情况下的单掺粉煤灰体系和单掺凝灰岩体系,水泥-凝灰岩-粉煤灰三元胶凝体系的水化产物较多,越来越多的凝灰岩和水泥的水化产物包裹粉煤灰球形颗粒,并逐渐形成整体,整个浆体微观结构结合紧密。  相似文献   

20.
邓长军 《四川水力发电》2013,32(1):60-63,124
斯登沃代水电站开展的砂岩骨料大坝混凝土应用研究成果表明:工程区域料场砂岩骨料具有吸水率大、微粒含量较多等特点,用其配制的混凝土存在用水量大、胶凝材料多和混凝土干缩、湿胀变形较大等缺陷。因此,在工程使用硅酸盐水泥进行混凝土配合比设计的同时,建议采用减水率更高的缓凝高效减水剂;同时,应加大粉煤灰掺量,以达到抑制骨料碱硅酸反应,减少混凝土胶凝材料用量,降低混凝土水化热温升,减少混凝土的收缩变形,提高混凝土的抗裂性能和耐久性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号