首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
These studies examined the role of spinal N-methyl-D-aspartic acid (NMDA) receptors in mediating sympathoexcitation evoked by stimulation of neurons in the rostral ventrolateral medulla (RVLM). In urethane-anesthetized rats, blood pressure, heart rate, and splanchnic sympathetic nerve activity (SNA) were recorded. The NMDA receptor antagonist D-2-amino-7-phosphonoheptanoic acid (D-AP7) was administered to the spinal cord via intrathecal (IT) catheter. Blockade of spinal NMDA receptors reduced arterial blood pressure, heart rate, and SNA. Spinal administration of D-AP7 markedly attenuated the pressor and sympathoexcitatory responses evoked by L-glutamate stimulation of the RVLM. The small increases in heart rate evoked by stimulation of the RVLM were not affected by IT administration of D-AP7. These results indicate that NMDA receptors in the spinal cord mediate the pressor and sympathoexcitatory responses evoked by activation of a bulbospinal pathway originating from the RVLM. Moreover, these data suggest that excitatory amino acid neurotransmitters and NMDA receptors in the spinal cord play an important role in the maintenance and regulation of SNA and cardiovascular function.  相似文献   

2.
Mental diseases such as schizophrenia are being modeled by artificial neural networks in an attempt to understand the underlying neuropathological processes. We studied hospitalized psychiatric patients that met the DSM-IIIR criteria for schizophrenia (N=19), and normal subjects with no psychiatric history (N=18). Performance on the Wisconsin Card Sorting Test (WCST) by schizophrenic patients was poorer than normal subjects as estimated by various scoring measurements. We then modeled an artificial neural network, motivated by biological considerations, that is able to simulate performance of normals and schizophrenics on the WCST. In order to model the complex nature of the WCST, we designed novel learning rules based on non-associative learning paradigms. We found that there must be a minimum amount of noise, or inherent synaptic instability, for our model to perform similar to schizophrenics.  相似文献   

3.
Within the rostral ventromedial medulla (RVM), there are two classes of putative pain modulation neurons: ON cells and OFF cells, which respectively burst or pause prior to withdrawal reflexes elicited by noxious stimulation. Alpha-adrenergic agonists injected into the RVM produce changes in the latency of spinal nocifensive reflexes and, when iontophoretically applied, alter the firing of RVM ON but not OFF cells. To provide further information about the contribution of norepinephrine to RVM neuron function, we analyzed the distribution of tyrosine hydroxylase immunoreactive (TH-ir) appositions upon RVM ON and OFF cells. In the lightly anesthetized rat, seven ON and five OFF cells were identified by changes in their discharge rate in relation to nociceptive withdrawal reflexes and were labeled by intracellular injection of neurobiotin. Sections containing labeled cells were visualized by using avidin conjugated to a Texas Red fluorophore. Tissue with labeled cells was subsequently processed for TH-ir by using a Bodipy fluorophore conjugated secondary antibody. The distribution of the Bodipy-labeled fibers and terminals upon the Texas Red-labeled neurons was mapped using a confocal laser-scanning microscope. All the labeled neurons exhibited close TH-ir appositions. Appositions were of two types: swellings and fibers. Although the numbers and density of appositions varied among the cells, there were no consistent differences that correlated with physiological properties. Thus the overall density of appositions for ON cells (29.0 +/- 22.2 x 10(4) microns2) did not differ significantly from that for OFF cells (25.4 +/- 22.2 x 10(4) microns2). Tyrosine hydroxylase immunoreactive (TH-ir) appositions upon ON and OFF cells varied with their location along the dorso-ventral axis with more ventral neurons having a greater density of TH-ir swelling-type appositions. In a separate study, TH-ir and dopamine-beta-hydroxylase-like immunoreactivity (DBH-ir) were mapped in the same sections by using confocal microscopy. Nearly 97% of the TH-ir profiles co-localized with DBH-ir. These observations provide evidence that both ON and OFF cells in the RVM are targeted by noradrenergic inputs.  相似文献   

4.
Recent epidemiologic data demonstrate a dramatic increase in the incidence of end-stage renal disease (ESRD) in patients with non-insulin-dependent diabetes mellitus (NIDDM), thus dispelling the mistaken belief that renal prognosis is benign in NIDDM. Currently, the leading cause of ESRD in the United States, Japan, and in most industrialized Europe is NIDDM, accounting for nearly 90% of all cases of diabetes. In addition to profound economic costs, patients with NIDDM and diabetic nephropathy have a dramatically increased morbidity and premature mortality. NIDDM-related nephropathy varies widely among racial and ethnic groups, genders and lifestyles; and gender may interact with race to affect the disease progression. While the course of insulin-dependent diabetes mellitus (IDDM) progresses through well-defined stages, the natural history of NIDDM is less well characterized. NIDDM patients with coronary heart disease have a higher urinary albumin excretion rate at the time of diagnosis and follow-up. This greater risk may also be associated with hypertension and hyperlipidemia, and genes involved in blood pressure are obvious candidate genes for diabetic nephropathy. Hyperglycemia appears to be an important factor in the development of proteinuria in NIDDM, but its role and the influence of diet are not yet clear. Tobacco smoking can also be deleterious to the diabetic patient, and is also associated with disease progression. Maintaining euglycemia, stopping smoking and controlling blood pressure may prevent or slow the progression of NIDDM-related nephropathy and reduce extrarenal injury. Treatment recommendations include early screening for hyperlipidemia, appropriate exercise and a healthy diet. Cornerstones of management should also include: (1) educating the medical community and more widely disseminating data supporting the value of early treatment of microalbuminuria; (2) developing a comprehensive, multidisciplinary team approach that involves physicians, nurses, diabetes educators and behavioral therapists; and (3) intensifying research in this field.  相似文献   

5.
1. The nucleus locus coeruleus (LC) is made up of noradrenergic cells all of which are hyperpolarized by opioids. Recent work has shown that the reversal potential of the opioid-induced current is more negative than the potassium equilibrium potential. The aim of the present study was to determine whether the extent of the dendritic field could contribute to the very negative opioid reversal potential. 2. Individual LC cells were labeled in the brain slice preparation. The number of dendrites found on cells in slices sectioned in the horizontal plane was greater than cells in coronal slices. However, the dimensions of the cell body slices from each plane were not significantly different. 3. The resting conductance of neurons from slices cut in the horizontal plane was significantly larger than in cells from coronal plane. 4. The amplitude of the outward current induced by [Met5]-enkephalin (ME) was larger in cells from horizontal slices and the reversal potential was more negative than that of cells in coronal slices. 5. The results show that the plane of section influences the membrane properties and opioid actions of LC neurons in vitro and suggest that these differences correlate with the numbers of dendrites. The results suggest that in vivo, in addition to intrinsic membrane properties and synaptic inputs, the structural makeup of the nucleus is an important factor in determining the activity.  相似文献   

6.
7.
The rostral ventrolateral medulla (RVLM) contains barosensitive, bulbospinal neurons that provide the main supraspinal excitatory input to sympathetic vasomotor preganglionic neurons. However, the phenotype of the critical RVLM cells has not been conclusively determined. The goal of the current study was to identify the proportion of electrophysiologically defined, putative, presympathetic RVLM neurons that are C1 cells. We used a juxtacellular labeling technique to individually fill spontaneously active, barosensitive, bulbospinal RVLM neurons with biotinamide following electrophysiological characterization in chloralose-anesthetized rats. To determine whether these neurons could be classified as C1 cells, the biotinamide-labeled cells were processed for detection of tyrosine hydroxylase. The majority of barosensitive bulbospinal RVLM neurons were tyrosine hydroxylase immunoreactive (TH-ir; 28 of 39). All of the barosensitive bulbospinal RVLM neurons with axonal conduction velocities in the C fiber range (<1 m/second) were TH-ir (n = 16), whereas faster conducting cells (1 to 7 m/second) were either lightly TH-ir (n = 12) or not detectably TH-ir (n = 11). Adjacent respiratory-related RVLM units labeled with biotinamide were not detectably TH-ir (n = 10). To verify that TH-ir cells were indeed adrenergic, a subset of barosensitive bulbospinal cells labeled with biotinamide were examined for phenylethanolamine N-methyltransferase immunoreactivity (PNMT-ir). Three slowly conducting cells had detectable PNMT-ir, and two fast-conducting cells had no detectable PNMT-ir. These results indicate that the majority of bulbospinal RVLM neurons with putative sympathoexcitatory function are C1 cells.  相似文献   

8.
In the present study the effects of different doses of corticotropin-releasing factor (CRF) and the CRF antagonist alpha-helical CRF on locus coeruleus (LC) neurons were studied in anesthetized male Wistar rats. To monitor the release of noradrenaline (NA) and its metabolite 3-methoxy-4-hydroxyphenylethylene glycol (MHPG), a microdialysis probe was implanted into the parietal cortex, a major projection area of the LC. Saline, 0.17, 0.51 nmol CRF and a combination of 5.1 nmol alpha-helical CRF and 0.51 nmol CRF were applied to the LC via a fused silica capillary. While both doses of CRF augmented NA in parietal cortex dialysates (0.51 nmol CRF: from 0.0206 to 0.0266 pmol/sample; 0.17 nmol CRF: from 0.0147 to 0.0170 pmol/sample), saline did not affect NA concentration. The metabolite MHPG also increased, but in a more prolonged time course. The antagonist alpha-helical CRF attenuated the CRF effects. The increase of extraneuronal NA concentration monitored in the cortical samples indicates an augmented depolarization rate of noradrenergic LC neurons. This clearly demonstrates the activation of these neurons by CRF, suggesting physiological interactions of CRF and noradrenergic neurons.  相似文献   

9.
The aim of this study, conducted in anaesthetized rats, was to examine the morphology of barosensitive neurons in the rostral ventrolateral medulla and their immunoreactivity for a catecholamine synthesizing enzyme, tyrosine hydroxylase. Thirty neurons displaying inhibitory postsynaptic potentials following stimulation of the aortic depressor nerve were intracellularly labelled with Lucifer Yellow or Neurobiotin. Some of these neurons could be excited antidromically from the second thoracic segment of the spinal cord, with conduction velocities of spinal axons ranging from 1.9 to 7.2 m/s. The filled somas were found immediately caudal to the facial nucleus and ventral or ventromedial to compact formation of the nucleus ambiguus. Some dendrites reached the ventral medullary surface. Axons usually projected dorsomedially and then made a sharp rostral and/or caudal turn. The caudally projecting axon could, in some cases, be followed to the first cervical segment of the spinal cord. Seven cells issued fine axon collaterals on the ipsilateral side. These were identified mainly in two areas: in the rostral ventrolateral medulla (or immediately dorsomedial to that region), and within the dorsal vagal complex. Seven of 27 examined cells (26%) were tyrosine hydroxylase-immunoreactive and were classified as C1 adrenergic neurons. No clear relationship was found between the presence or absence of adrenergic phenotype and the morphology of filled cells. However, the amplitude of aortic nerve-evoked inhibitory postsynaptic potentials was significantly larger in tyrosine hydroxylase-positive neurons. Possible reasons for the low percentage of barosensitive cells with tyrosine hydroxylase immunoreactivity found in this study, in comparison with previously published estimates, are discussed. This is the first study describing the morphology of neurons in this part of the medulla identified as barosensitive in vivo, and directly demonstrating adrenergic phenotype in a subset of these neurons.  相似文献   

10.
Synthetic human beta-endorphin increased plasma glucose concentration when administered intracisternally in chronically cannulated, conscious, unrestrained, adult male rats. This hyperglycemic effect of beta-endorphin was blocked by prior systemic administration of naloxone, supporting mediation of the effect at opioid receptors in brain. Adrenal denervation blocked the beta-endorphin-induced increase in plasma glucose, supporting a thesis that this effect is mediated at least in part by increased epinephrine secretion. The hyperglycemic response to intracerebral beta-endorphin was also blocked by either intracerebral hemicholinium-3 or somatostatin, supporting both a cholinergic link and a somatostatin neuron in the brain mechanism regulating endorphin-induced stimulation of sympathetic outflow.  相似文献   

11.
The rostral ventral medulla has been shown to consist of three distinct subregions: the midline or raphé region, the lateral paragigantocellular-gigantocellular region and the rostro-ventrolateral reticular nucleus. All three regions have been shown to contribute to central vaso-regulation and to project towards sympathetic preganglionic neurons of the thoracic spinal cord. Therefore it is of particular interest to describe the interconnections between the three regions and to see if local afferents reach cells which have been implicated in the regulation of descending inputs. Following injections of the anterograde tract tracer Phaseolus vulgaris leucoagglutinin into the lateral paragigantocellular nucleus or the rostroventrolateral reticular nucleus, labelled axons were traced into the medullary raphé nuclei and the contralateral rostral ventrolateral medulla. Efferents originating from both regions innervated the raphé pallidus, raphé obscurus and raphé magnus. However the distribution of terminals originating from the two regions was different in the contralateral ventrolateral medulla oblongata. The data indicate that the connection between the ipsi- and contralateral equivalents of both the lateral paragigantocellular-gigantocellular region and the rostroventrolateral reticular nucleus are stronger than the cross-connection between the ipsi- and contralateral parts of the two different regions. In the second part of the study, the existence of direct projections from the rostroventrolateral reticular nucleus and the lateral paragigantocellular-gigantocellular region onto serotonin-immunogold-labelled cells of the ventromedial medulla were investigated. The correlated light and electron microscopic analysis revealed direct synaptic contacts between axons originating from both the lateral paragigantocellular-gigantocellular region and the rostroventrolateral reticular nucleus, and serotonin-immunoreactive cells of the raphé obscurus and raphé pallidus. The results of the present light microscopic tract-tracing study revealed a different pattern of the intramedullary projection of the lateral paragigantocellular-gigantocellular region and the rostroventrolateral reticular nucleus. These data are in support of the proposed parcellation of the two cytoarchitectonically different areas of the rostral ventrolateral medulla into two functionally distinct subdivisions. Furthermore, the direct anatomical connection revealed in the present study between cells of the rostral ventrolateral and ventromedial medulla oblongata indicates the possibility that vasoregulatory effects of some cells of the rostral ventrolateral medulla oblongata might be executed via direct projections onto serotonin-immunoreactive cells of the medullary raphé nuclei.  相似文献   

12.
Chronic toxicity studies were conducted with an algae (Nannochloris oculata), a rotifer (Brachionus calyciflorus), and a cladoceran (Daphnia magna) to determine their relative sensitivities to the organophosphorus insecticide fenitrothion. The cladoceran D. magna was the most sensitive of the three species. The no observed effect concentrations (NOECs) for the study with the algae (1.0 mg/liter) and for the rotifer (1.0 mg/liter) were higher than the NOEC (0.009 microgram/liter) and the LC50 of 24 hr (0.067 microgram/liter) for D. magna. Most of the algal populations were not initially affected by exposure to fenitrothion. Pesticide concentrations higher than 1.0 mg/liter significantly reduced algal densities after 72 hr exposure. The effects of chronic exposure of the rotifer B. calyciflorus to fenitrothion were evaluated using some demographic parameters: intrinsic rate of natural increase (r), generation time, net reproductive rate, and life expectancy. All the parameters studied decreased with increasing toxicant concentrations. The parameters used to determine the effect of the pesticide on D. magna reproduction were mean total young per female, mean brood size, mean time to first reproduction, and r. The r and the rest of the studied parameters were affected at 0.011-microgram/liter and higher fenitrothion concentrations. Growth, as measured by body length, was only depressed significantly at 0.011 microgram/liter pesticide.  相似文献   

13.
Promulgation of practice guidelines in medicine has increased interest in the structure of clinical policy making. It is argued that with a generic definition of policy as "the rules governing the behavior of individuals or institutions," clinical policy making is analogous to legislative policy making. Practice guidelines emphasize the advantages of making clinical policy more explicit. The structure of legislative policy making has evolved over many years to meet the challenge of making both the policies and the process of policy making explicit. Processes to promulgate clinical policies may be able to exploit this experience to improve clinical policy making and thereby retain control of the process within medicine. Generic steps are outlined for making decisions with incomplete information; synthesis of facts, vested interests, and values; involvement of stakeholders; and implementation of policy. An illustration of the use of the generic steps to make and implement a clinical policy for cesarean birth follows, with evaluations of its impact on the behavior and satisfaction of clinical stakeholders.  相似文献   

14.
The electrical activity of locus coeruleus neurons was investigated during cortical spreading depression in urethane-anaesthetized rats. Cortical spreading depression was induced by a direct application of 1-3 M KCl solution to the surface of the cerebral cortex. The occurrence of cortical spreading depression was assessed by recording negative d.c. shifts and in some experiments by monitoring the extracellular potassium concentrations. The mean spontaneous firing rate of locus coeruleus neurons was significantly reduced during cortical spreading depression. Approximately 60% of locus coeruleus neurons recorded during cortical spreading depression revealed anomalous burst activity consisting of multiple initial segment spikes as well as full initial segment-somatodendritic spikes with a marked initial segment-somatodendritic break. Each spike of the cortical spreading depression-related burst activity occurred at intervals ranging from 15.0 ms to 90.1 ms (34.9 +/- 0.5 ms). The burst activity appeared unpredictably at variable intervals in a phasic or tonic manner during cortical spreading depression. The cortical spreading depression-related burst activity of locus coeruleus neurons mimicked antidromic spikes induced by train stimulation of the cerebral cortex at short interspike intervals during iontophoretic application of GABA to locus coeruleus neurons, whereas it was totally different from synaptically-activated burst activity induced by tail pinch. The full spikes and initial segment spikes in the cortical spreading depression-related burst activity failed to collide with cortically elicited antidromic spikes, even when they appeared within the collision interval. The proportion of initial segment spikes in the cortical spreading depression-related burst activity was reduced following an increase in membrane excitability by iontophoretic application of glutamate, and increased during a decreased membrane excitability by GABA application. The antidromic burst activity of locus coeruleus neurons also appeared for a short time during cortical spreading depression prior to the occurrence of seizure waves induced by GABA antagonists, while the burst activity could not be observed during seizure activity. These results indicate that the cortical spreading depression-related burst activity was of antidromic origin and that the marked initial segment-somatodendritic break in spontaneous spikes of locus coeruleus neurons during cortical spreading depression was due to reduced excitability of the somatodendritic membrane. The cortical spreading depression-related burst activity may cause release of a large amount of noradrenaline in vast regions of locus coeruleus terminal fields through the numerous axon collaterals, thereby playing a role in functional changes of brain neurons related to cortical spreading depression.  相似文献   

15.
16.
Noradrenaline and adrenergic agonists were tested on pacemaker-like and silent neurons of the rat rostral ventrolateral medulla using intracellular recording in coronal brainstem slices as well as in punches containing only the rostral ventrolateral medullary region. Noradrenaline (1-100 microM) depolarized or increased the frequency of discharge of all cells tested in a dose-dependent manner. The noradrenaline-induced depolarization was associated with an apparent increase in cell input resistance at low concentrations and a decrease or no significant change at higher concentrations. Moreover, it was voltage dependent and its amplitude decreased with membrane potential hyperpolarization. Noradrenaline caused a dose-related increase in the frequency and amplitude of spontaneous inhibitory postsynaptic potentials. The alpha 1-adrenoceptor antagonist prazosin (0.5 microM) abolished the noradrenaline depolarizing response as well as-the noradrenaline-evoked increase in synaptic activity and unmasked an underlying noradrenaline dose-dependent hyperpolarizing response associated with a decrease in cell input resistance and sensitive to the alpha 2-adrenoceptor/antagonist yohimbine (0.5 microM). The alpha 1-adrenoceptor agonist phenylephrine (10 microM) mimicked the noradrenaline depolarizing response associated with an increase in membrane resistance as well as the noradrenaline-induced increase in synaptic activity. The alpha 2-adrenoceptor agonists UK-14,304 (1-3 microM) and clonidine (10-30 microM) produced only a small hyperpolarizing response, whereas the beta-adrenoceptor agonist isoproterenol (10-30 microM) had no effect. Baseline spontaneous postsynaptic potentials were abolished by strychnine (1 microM), bicuculline (30 microM) or both. However, only the strychnine-sensitive postsynaptic potentials had their frequency increased by noradrenaline or phenylephrine and they usually occurred with a regular pattern. Tetrodotoxin (1 microM) eliminated 80-95% of baseline spontaneous postsynaptic potentials and prevented the increase in synaptic activity evoked by noradrenaline and phenylephrine. Similar results were obtained in rostral ventrolateral medulla neurons impaled in both coronal slices and punches of the rostral ventrolateral medulla. It is concluded that noradrenaline could play an important inhibitory role in the rostral ventrolateral medulla via at least two mechanisms: an alpha 2-adrenoceptor-mediated hyperpolarization and an enhancement of inhibitory synaptic transmission through activation of alpha 1-adrenoceptors located on the somatic membrane of glycinergic interneurons. Some of these interneurons exhibit a regular discharge similar to the pacemaker-like neurons and might, at least in part, constitute a central inhibitory link in the baroreceptor-vasomotor reflex pathway.  相似文献   

17.
Acute or chronic increases in arterial blood pressure are associated with decreases in nociception. In addition, acute increases in arterial blood pressure inhibit ON cells and excite OFF cells of the rostral ventral medulla (RVM). The current study tested whether the antinociception produced by increases in blood pressure is dependent on changes in the activity of ON and/or OFF cells. Single unit activity of ON or OFF cells was recorded in the RVM during increases in blood pressure produced by intravenous infusion of phenylephrine (1, 2.5, or 10 micrograms/min for 21 min) in lightly anesthetized rats. Nociception was measured using the tail flick test. Phenylephrine dose-dependently increased mean arterial pressure and tail flick latency, but had inconsistent effects on neural activity in the RVM. In a second study, the effects of phenylephrine infusion on tail flick latency was determined before and after saline or lidocaine microinjections into the RVM. Lidocaine had no effect on the ability of phenylephrine to inhibit the tail flick reflex. These data suggest that the RVM, and therefore ON and OFF cells, is not required for phenylephrine-induced antinociception.  相似文献   

18.
The distribution of mu opioid receptors was examined by light and electron microscopic autoradiography in the locus coeruleus of the rat following in vitro labelling with the iodinated agonist [125I]FK-33824. At the light microscopic level, specific mu opioid binding sites were concentrated over the perikarya and dendrites of neurons that were tyrosine hydroxylase-immunopositive in adjacent sections. Accordingly, both the number of tyrosine hydroxylase-immunoreactive neurons and the density of labelled mu receptors decreased markedly throughout the rostrocaudal extent of the nucleus following treatment with the catecholaminergic neurotoxin 6-hydroxydopamine. By electron microscopy, specifically labelled receptors were detected both inside and on the surface of locus coeruleus neurons. Intracellular sites were found by resolution circle analysis to be highly concentrated within the endoplasmic reticulum and Golgi apparatus, suggesting that the ligand recognizes both glycosylated and preglycosylated forms of receptor. The remainder were found mainly over the cytoplasmic matrix or intracytoplasmic vesicles, and were attributed to newly synthesized or recycled receptors in transit. Cell surface receptors were present over both dendritic and perikaryal membranes of noradrenergic cells. These were most highly concentrated opposite abutting axon terminals, suggesting the existence of receptor 'hot spots' at sites of putative endogenous ligand release. However, only a small proportion of these sites was associated with synaptic specializations. Furthermore, an important contingent was detected opposite non-axonal elements, such as dendrites and glial cells, suggesting that mu opioid ligands act mainly parasynaptically on locus coeruleus neurons. Finally, approximately 5% of labelled receptors were associated with axoglial interfaces, indicating that a minor action of mu opioids in the locus may be presynaptic and/or glial.  相似文献   

19.
Choline acetyltransferase (ChAT) is a specific phenotypic marker of cholinergic neurons. Previous reports showed that different upstream regions of the ChAT gene are necessary for cell type-specific expression of reporter genes in cholinergic cell lines. The identity of the mouse ChAT promoter region controlling the establishment, maintenance, and plasticity of the cholinergic phenotype in vivo is not known. We characterized a promoter region of the mouse ChAT gene in transgenic mice, using beta-galactosidase (LacZ) as a reporter gene. A 3,402-bp segment from the 5'-untranslated region of the mouse ChAT gene (from -3,356 to +46, +1 being the translation initiation site) was sufficient to direct the expression of LacZ to selected neurons of the nervous system; however, it did not provide complete cholinergic specificity. A larger fragment (6,417 bp, from -6,371 to +46) of this region contains the requisite regulatory elements that restrict expression of the LacZ reporter gene only in cholinergic neurons of transgenic mice. This 6.4-kb DNA fragment encompasses 633 bp of the 5'-flanking region of the mouse vesicular acetylcholine transporter (VAChT), the entire open reading frame of the VAChT gene, contained within the first intron of the ChAT gene, and sequences upstream of the start coding sequences of the ChAT gene. This promoter will allow targeting of specific gene products to cholinergic neurons to evaluate the mechanisms of diseases characterized by dysfunction of cholinergic neurons and will be valuable in design strategies to correct those disorders.  相似文献   

20.
Opioid dependence is widely believed to result from neuroadaptations in specific brain regions. However, the precise molecular mechanisms underlying these adaptations are not yet clear. Our aim was to explore the role of mitogen-activated protein kinase (MAPK) in mu opioid receptor signalling in vivo. Using anti-phospho MAPK antibodies, activated MAPK was detected in cortical neurons (layers II/III), median eminence, amygdaloid and hypothalamic nuclei in untreated animals. Dense nuclear and cytoplasmic staining was observed resulting in full visualization of processes in these cells. Chronic, but not acute, administration of morphine greatly diminished this staining pattern while mu opioid receptor levels and levels of MAP kinase as detected with a phosphorylation state-independent antibody were unchanged. When opioid withdrawal was precipitated with naloxone a dramatic increase in MAP kinase phosphorylation was observed in somata and fibres of locus coeruleus, solitary tract and hypothalamic neurons. Thus, the differential activation state of MAPK could have important implications for understanding the mechanisms underlying opioid tolerance and dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号