首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On-demand routing protocols have the potential to provide scalable information delivery in large ad hoc networks. The novelty of these protocols is in their approach to route discovery, where a route is determined only when it is required by initiating a route discovery procedure. Much of the research in this area has focused on reducing the route discovery overhead when prior knowledge of the destination is available at the source or by routing through stable links. Hence, many of the protocols proposed to date still resort to flooding the network when prior knowledge about the destination is un-available. This paper proposes a novel routing protocol for ad hoc networks, called On-demand Tree-based Routing Protocol (OTRP). This protocol combines the idea of hop-by-hop routing (as used by AODV) with an efficient route discovery algorithm called Tree-based Optimised Flooding (TOF) to improve scalability of ad hoc networks when there is no prior knowledge about the destination. To achieve this in OTRP, route discovery overheads are minimised by selectively flooding the network through a limited set of nodes, referred to as branching nodes. The key factors governing the performance of OTRP are theoretically analysed and evaluated, including the number of branch nodes, location of branching nodes and number of Route REQuest (RREQ) retries. It was found that the performance of OTRP (evaluated using a variety of well-known metrics) improves as the number of branching nodes increases and the number of consumed RREQ retries is reduced. Additionally, theoretical analysis and simulation results shows that OTRP outperforms AODV, DYMO, and OLSR with reduced overheads as the number of nodes and traffic load increases.  相似文献   

2.
In traditional stability-oriented route discovery of mobile ad hoc networks, in-between nodes need to rebroadcast identical route request (RREQ) packets, which contain same source node ID and broadcast sequence number, to discover more stable route, yet it increases routing overhead and data transmission delay obviously. Therefore, a stability-oriented route discovery algorithm is proposed to limit routing overhead and decrease transmission delay. In this algorithm, all neighbor nodes of some node will play a mix strategy game named stability-based RREQ forwarding game after receiving an identical RREQ, and independently determine the RREQ forwarding probability based on Nash equilibrium, respectively. The simulation results show that the proposed stability-oriented route discovery algorithm not only reduces routing overhead and transmission delay effectively, but also improve other routing performance.  相似文献   

3.
Mobile ad hoc networks (MANETs) rely on the benevolence of nodes within the network to forward packets from a source node to a destination node. This network construction allows for the forwarding nodes, whether they are selfish or malicious, to drop packets hindering end-to-end communication. In this paper, a new scheme is proposed against collusion black hole and slander attacks in MANETs, named E2EACK. A novel method is used to detect collusion attacks due to collusive malicious nodes which cooperate in the route discovery, but refuse to forward data packets and do not disclose the misbehavior of each other. Contrary to existing methods that detect only collusion black hole attacks, the E2EACK also detects slander attacks and framing attacks. Moreover, the E2EACK uses ACKnowledgment packet to detect malicious nodes on the path and Message Authentication Code (MAC) to authenticate the sender of each data packet. Analytical and simulation results show that the proposed scheme considerably decreases the routing overhead and increases the packet delivery ratio compared to the existing methods.  相似文献   

4.
Rosa  Panayiotis  Christos   《Ad hoc Networks》2007,5(1):87-99
Multipath routing in ad hoc networks increases the resiliency against security attacks of collaborating malicious nodes, by maximizing the number of nodes that an adversary must compromise in order to take control of the communication. In this paper, we identify several attacks that render multipath routing protocols vulnerable to collaborating malicious nodes. We propose an on-demand multipath routing protocol, the secure multipath routing protocol (SecMR), and we analyze its security properties. Finally, through simulations, we evaluate the performance of the SecMR protocol in comparison with existing secure multipath routing protocols.  相似文献   

5.
A stable and reliable routing mechanism for vehicular ad hoc networks (VANETs) is an important step toward the provision of long data transmission applications, such as file sharing and music download. Traditional mobile ad hoc network (MANET) routing protocols are not suitable for VANET because the mobility model and environment of VANET are different from those of traditional MANET. To solve this problem, we proposed a new stable routing algorithm, called stable directional forward routing. The novelty of the proposed routing protocol is its combining direction broadcast and path duration prediction into ad hoc on-demand distance vector routing protocols, which including: (1) Nodes in VANET are grouped based on the position, only nodes in a given direction range participating in the route discovery process to reduce the frequency of flood requests, (2) Route selection is based on the link duration while not the hops or other metrics to increase the path duration, (3) Route discovery is executed before the path expiration in order to decrease the end to end delay. The performance of the new scheme is evaluated through extensive simulations with Qualnet. Simulation results indicate the benefits of the proposed routing strategy in terms of decreasing routing control packet, reducing the number of link-breakage events, improving the packet delivery ratio and decreasing the end-to-end delay.  相似文献   

6.
In hybrid ad hoc networks, mobile nodes can communicate not only with each other in a self-organizing manner, but also with nodes on wired networks for extensive information retrieval and dissemination. In this article we consider efficient routing operations between any two nodes in an ad hoc network that is linked to wired networks by an access point. To build routes with low routing overhead efficiently, we develop a new routing scheme of region-based routing (RBR), which utilizes hop counts between mobile nodes and the access point to localize a route discovery within a limited topological region. Limiting the region of route discovery results in fewer routing messages and therefore reduces routing overhead. Simulation results show that the RBR scheme greatly reduces routing overhead while preserving a high rate of success for route discovery to the destination  相似文献   

7.
In this paper, we present a new quality of service (QoS) routing protocol for mobile ad hoc networks (MANETs). Most of the existing routing protocols assume homogeneous nodes in MANETs, i.e., all nodes have the same communication capabilities and characteristics. However, in many ad hoc networks, nodes are not the same. Some nodes have longer transmission range, larger transmission bandwidth, and are more reliable and robust than other nodes. We take advantage of the non-homogeneous property to design more efficient QoS routing protocol. And node location information is used to aid routing. We also develop a new algorithm to calculate end-to-end bandwidth for a given path. Our QoS routing protocol contains end-to-end bandwidth calculation and bandwidth reservation. QoS route is discovered and setup only when it is needed. Extensive simulation studies demonstrate the good performance of the QoS routing protocol.  相似文献   

8.
VANET is an ad hoc network that formed between vehicles. Security in VANET plays vital role. AODV routing protocol is a reactive or on-demand routing protocol which means if there is data to be send then the path will create. AODV is the most commonly used topology based routing protocol for VANET. Using of broadcast packets in the AODV route discovery phase caused it is extremely vulnerable against DOS and DDOS flooding attacks. Flooding attack is type of a denial of service attack that causes loss of network bandwidth and imposes high overhead to the network. The method proposed in this paper called Balanced AODV (B-AODV) because it expects all network node behave normally. If network nodes are out of the normal behavior (too much route request) then they identified as malicious node. B-AODV is designed with following feature: (1) The use of adaptive threshold according to network conditions and nodes behavior (balance index) (2) Not using additional routing packets to detect malicious nodes (3) Perform detection and prevention operations independently on each node (4) Perform detection and prevention operations in real time (5) No need for promiscuous mode. This method for detection and prevention flooding attack uses average and standard deviation. In this method each node is employing balance index for acceptation or rejection RREQ packets. The results of the simulation in NS2 indicates B-AODV is resilience against flooding attack and prevent loss of network bandwidth. Comparing between AODV with B-AODV in normal state (non-attacker) shows B-AODV is exactly match with AODV in network performance, this means that the B-AODV algorithm does not impose any overhead and false positive to AODV.  相似文献   

9.
We study routing misbehavior in MANETs (mobile ad hoc networks) in this paper. In general, routing protocols for MANETs are designed based on the assumption that all participating nodes are fully cooperative. However, due to the open structure and scarcely available battery-based energy, node misbehaviors may exist. One such routing misbehavior is that some selfish nodes will participate in the route discovery and maintenance processes but refuse to forward data packets. In this paper, we propose the 2ACK scheme that serves as an add-on technique for routing schemes to detect routing misbehavior and to mitigate their adverse effect. The main idea of the 2ACK scheme is to send two-hop acknowledgment packets in the opposite direction of the routing path. In order to reduce additional routing overhead, only a fraction of the received data packets are acknowledged in the 2ACK scheme. Analytical and simulation results are presented to evaluate the performance of the proposed scheme  相似文献   

10.
Mobile adhoc network is dynamic in nature and it operates completely in an infrastructure-less environment. It discovers the way routes dynamically to reach the destination. Securing a dynamic way route, which is not known before establishing communication, is always a challenge in the mobile ad hoc network. Most of the existing secure routing protocols target to evade specific type of attacks or malicious behaviour of the nodes or networks. We propose a novel secure way routing protocol for securing the dynamic way routes in MANET. It provides a unique session key for each route to secure the data communication. Moreover, it authenticates the data packets using asymmetric cryptography and secures the routing field message using two-way asymmetric cryptography. The proposal is implemented and tested for assessing the protocol’s performance. We have also compared the protocol with the other secure routing protocols for evaluating its performance.  相似文献   

11.
SMORT: Scalable multipath on-demand routing for mobile ad hoc networks   总被引:3,自引:0,他引:3  
L.  S.V.   《Ad hoc Networks》2007,5(2):162-188
Increasing popularity and availability of portable wireless devices, which constitute mobile ad hoc networks, calls for scalable ad hoc routing protocols. On-demand routing protocols adapt well with dynamic topologies of ad hoc networks, because of their lower control overhead and quick response to route breaks. But, as the size of the network increases, these protocols cease to perform due to large routing overhead generated while repairing route breaks. We propose a multipath on-demand routing protocol (SMORT), which reduces the routing overhead incurred in recovering from route breaks, by using secondary paths. SMORT computes fail-safe multiple paths, which provide all the intermediate nodes on the primary path with multiple routes (if exists) to destination. Exhaustive simulations using GloMoSim with large networks (2000 nodes) confirm that SMORT is scalable, and performs better even at higher mobility and traffic loads, when compared to the disjoint multipath routing protocol (DMRP) and ad hoc on-demand distance vector (AODV) routing protocol.  相似文献   

12.
Due to the characteristics of mobile ad hoc networks, such networks are more susceptible to the destruction of malicious attacks or denial of cooperation. It would be easy for an adversary or a malicious node to launch attacks on routing function, especially attacks on packet routing. In order to mitigate these hazards, we incorporate the concept of ‘trust’ into MANETs, and abstract a decentralized trust inference model. The core of this model is trust computation, which is divided into two parts: historical trust assessment and trust prediction. We can quantify a node’s historical trust based on its historical behaviors via introducing multiple trust attributes. The fuzzy AHP method based on entropy weights is used to calculate the weight of trust attributes. By making use of the obtained historical trust data sequence, we propose an improved dynamic grey-Markov chain prediction measure to effectively estimate node’s trust prediction. In order to verify the validity of our trust model, we propose a trust-enhanced unicast routing protocol and a trust-enhanced multicast routing protocol, respectively. Both of the two new protocols can provide a feasible approach to kick out the untrustworthy nodes and choose the optimal trusted routing path. Moreover, the new proposed data-driven route maintenance mechanisms can reduce the routing overhead. The persuasive experiments have been conducted to evaluate the effectiveness of the new proposed trust-enhanced routing protocols in the aspects of packets delivery ratio, end-to-end latency, malicious node detection and attack resistance.  相似文献   

13.
Sensor networks are traditionally built using battery-powered, collaborative devices. These sensor nodes do not rely on dedicated infrastructure services (e.g., routers) to relay data. Rather, a communal effort is employed where the sensor nodes both generate data as well as forward data for other nodes. A routing protocol is needed in order for the sensors to determine viable paths through the network, but routing protocols designed for wired networks and even ad hoc networks are not sufficient given the energy overhead needed to operate them. We propose an energy-aware routing protocol, based on overlapping swarms of particles, that offers reliable path selection while reducing the energy consumption for the route selection process. Our particle-based routing with overlapping swarms for energy-efficiency algorithm shows promise in extending the life of battery-powered networks while still providing robust routing functionality to maintain network reliability.  相似文献   

14.
On-demand loop-free routing with link vectors   总被引:1,自引:0,他引:1  
We present the on-demand link vector (OLIVE) protocol, a routing protocol for ad hoc networks based on link-state information that is free of routing loops and supports destination-based packet forwarding. Routers exchange routing information reactively for each destination in the form of complete paths, and each node creates a labeled source graph based on the paths advertised by its neighbors. A node originates a broadcast route request (RREQ) to obtain a route for a destination for which a complete path does not exist in its source graph. When the original path breaks, a node can select an alternative path based on information reported by neighbors, and a node can send a unicast RREQ to verify that the route is still active. A node that cannot find any alternate path to a destination sends route errors reliably to those neighbors that were using it as next hop to the destination. Using simulation experiments in ns2, OLIVE is shown to outperform dynamic source routing, ad hoc on-demand distance vector, optimized link-state routing protocol, and topology broadcast based on reverse-path forwarding, in terms of control overhead, throughput, and average network delay, while maintaining loop-free routing with no need for source routes.  相似文献   

15.
A mobile ad hoc network (MANET) does not have traffic concentration points such as gateway or access points which perform behaviour monitoring of individual nodes. Therefore, maintaining the network function for the normal nodes when other nodes do not forward and route properly is a big challenge. One of the significant attacks in ad hoc network is wormhole attack. In this wormhole attack, the adversary disrupts ad hoc routing protocols using higher bandwidth and lower-latency links. Wormhole attack is more hidden in character and tougher to detect. So, it is necessary to use mechanisms to avoid attacking nodes which can disclose communication among unauthorized nodes in ad hoc networks. Mechanisms to detect and punish such attacking nodes are the only solution to solve this problem. Those mechanisms are known as intrusion detection systems (IDS). In this paper, the suggested biological based artificial intrusion detection system (BAIDS) include hybrid negative selection algorithm (HNSA) detectors in the local and broad detection subsection to detect anomalies in ad hoc network. In addition to that, response will be issued to take action over the misbehaving nodes. These detectors employed in BAIDS are capable of discriminating well behaving nodes from attacking nodes with a good level of accuracy in a MANET environment. The performance of BAIDS in detecting wormhole attacks in the background of DSR, AODV and DSDV routing protocols is also evaluated using Qualnet v 5.2 network simulator. Detection rate, false alarm rate, packet delivery ratio, routing overhead are used as metrics to compare the performance of HNSA and the BAIDS technique.  相似文献   

16.
移动Ad hoc网络中基于链路稳定性预测的按需路由协议   总被引:4,自引:0,他引:4  
移动Ad hoc网络拓扑的高度动态变化是造成传统按需路由协议的路由频繁通断的主要原因,因此在传统按需路由协议的基础上进行链路稳定性预测扩展,增强路由稳定性具有十分重要的意义。该文利用分组的接收功率把节点间的相对运动划分为靠近和远离两种类型,然后在不同相对运动类型下根据节点间距离得到了的链路平均维持时间。在路由过程中,中间节点利用得到的链路平均维持时间设置请求报文的转发延迟,通过一定转发规则选择稳定性较强的链路构成路径。仿真结果表明进行链路稳定性预测扩展后的按需路由协议能够有效增强路由的稳定性,并提高网络性能。  相似文献   

17.
Power-aware routing protocols in ad hoc wireless networks   总被引:5,自引:0,他引:5  
An ad hoc wireless network has no fixed networking infrastructure. It consists of multiple, possibly mobile, nodes that maintain network connectivity through wireless communications. Such a network has practical applications in areas where it may not be economically practical or physically possible to provide a conventional networking infrastructure. The nodes in an ad hoc wireless network are typically powered by batteries with a limited energy supply. One of the most important and challenging issues in ad hoc wireless networks is how to conserve energy, maximizing the lifetime of its nodes and thus of the network itself. Since routing is an essential function in these networks, developing power-aware routing protocols for ad hoc wireless networks has been an intensive research area in recent years. As a result, many power-aware routing protocols have been proposed from a variety of perspectives. This article surveys the current state of power-aware routing protocols in ad hoc wireless networks.  相似文献   

18.
A survey of routing attacks in mobile ad hoc networks   总被引:3,自引:0,他引:3  
Recently, mobile ad hoc networks became a hot research topic among researchers due to their flexibility and independence of network infrastructures, such as base stations. Due to unique characteristics, such as dynamic network topology, limited bandwidth, and limited battery power, routing in a MANET is a particularly challenging task compared to a conventional network. Early work in MANET research has mainly focused on developing an efficient routing mechanism in such a highly dynamic and resource-constrained network. At present, several efficient routing protocols have been proposed for MANET. Most of these protocols assume a trusted and cooperative environment. However, in the presence of malicious nodes, the networks are vulnerable to various kinds of attacks. In MANET, routing attacks are particularly serious. In this article, we investigate the state-of-the-art of security issues in MANET. In particular, we examine routing attacks, such as link spoofing and colluding misrelay attacks, as well as countermeasures against such attacks in existing MANET protocols.  相似文献   

19.
Flooding-based route discovery is widely assumed in existing routing protocols of wireless ad hoc networks. Network-wide flooding enables the discovery of optimal routes from sources to destinations; however, as all network nodes are required to participate in the relays of route request packets, substantial control overhead is inevitable. Some efficient broadcast schemes can suppress redundant packet relays, but they often suppress the discovery of optimal routes, too. In this article we propose to dynamically create a prerouting region between each source-destination pair and limit the propagations of route request packets only within this region. The prerouting region effectively restricts route discovery activities to the nodes that most likely constitute the optimal or near-optimal routes. Consequently, not only is route construction overhead significantly reduced; route optimality is also guaranteed. The article presents a region-based routing (REGR) protocol covering both new route formation cases and route update cases. Simulations show that our protocol is particularly beneficial to dense and large-scale mobile ad hoc networks.  相似文献   

20.
In ad hoc networks, malicious nodes can deploy wormhole attacks to fabricate a false scenario on the proximity relationship among mobile nodes. A classification of the attacks according to the format of the wormholes is proposed. This forms a basis to identify the detection capability of various approaches. An analysis shows that earlier approaches focus on the prevention of wormholes among neighbors that trust each other. As a more generic approach, we present an end‐to‐end scheme that can detect wormholes on a multi‐hop route. Only the trust between the source and the destination is assumed. The mechanism uses geographic information to detect anomalies in neighbor relations and node movements. To reduce the computation and storage overhead, we present a scheme called cell‐based open tunnel avoidance (COTA) to manage the information. COTA requires a constant space for every node on the path and the computation overhead increases linearly to the number of detection packets. We prove that the savings do not deteriorate the detection capability. Various schemes to control communication overhead are studied. The simulation and experiments on real devices show that the proposed mechanism can be combined with existent routing protocols to defend against wormhole attacks. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号