首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of the actin cytoskeleton in insulin action.   总被引:3,自引:0,他引:3  
Insulin has diverse effects on cells, including stimulation of glucose transport, gene expression, and alterations of cell morphology. The hormone mediates these effects by activation of signaling pathways which utilize, 1) adaptor molecules such as the insulin receptor substrates (IRS), the Src and collagen homologs (Shc), and the growth factor receptor binding protein 2 (Grb2); 2) lipid kinases such as phosphatidylinositol 3-kinase (PI 3-Kinase); 3) small G proteins; and 4) serine, threonine, and tyrosine kinases. The activation of such signaling molecules by insulin is now well established, but we do not yet fully understand the mechanisms integrating these seemingly diverse pathways. Here, we discuss the involvement of the actin cytoskeleton in the propagation and regulation of insulin signals. In muscle cells in culture, insulin induces a rapid actin filament reorganization that coincides with plasma membrane ruffling and intense accumulation of pinocytotic vesicles. Initiation of these effects of insulin requires an intact actin cytoskeleton and activation of PI 3-kinase. We observed recruitment PI 3-kinase subunits and glucose transporter proteins to regions of reorganized actin. In both muscle and adipose cells, actin disassembly inhibited early insulin-induced events such as recruitment of glucose transporters to the cell surface and enhanced glucose transport. Additionally, actin disassembly inhibited more prolonged effects of insulin, including DNA synthesis and expression of immediate early genes such as c-fos. Intact actin filaments appear to be essential for mediation of early events such as association of Shc with Grb2 in response to insulin, which leads to stimulation of gene expression. Preliminary observations support a role for focal adhesion signaling complexes in insulin action. These observations suggest that the actin cytoskeleton facilitates propagation of the morphological, metabolic, and nuclear effects of insulin by regulating proper subcellular distribution of signaling molecules that participate in the insulin signaling pathway.  相似文献   

2.
Role of TGFbeta signaling in skin carcinogenesis   总被引:3,自引:0,他引:3  
The TGFbeta signaling pathway is one of the most important mechanisms in the maintenance of epithelial homeostasis. Alterations leading to either the repression or enhancement of this pathway have been shown to affect cancer development. Although TGFbeta inhibits growth of normal epithelial cells, it is paradoxically overexpressed in many epithelial cancers. It has been postulated that TGFbeta acts as a tumor suppressor at the early stages of carcinogenesis, but overexpression of TGFbeta at late stages of carcinogenesis may be a critical factor for tumor invasion and metastasis. The detailed mechanisms regulating this functional switch of TGFbeta remain to be elucidated. The relevance of the TGFbeta signaling pathway to the development of primary epithelial tumors in man has been further substantiated by the discovery of mutations in TGFbeta receptors and in the downstream signaling mediators, the Smads. The epidermis is one of the major targeting tissues for TGFbeta signaling. Chemical carcinogenesis studies have revealed a paradoxical effect of TGFbeta on skin carcinogenesis: inhibition of papilloma formation but promotion of malignant conversion. In addition, deletion of the TGFbeta type II receptor accelerates skin carcinogenesis. This review focuses on our current understanding of the role of TGFbeta signaling in skin carcinogenesis.  相似文献   

3.
The Her2/neu tyrosine kinase receptor is a member of the epidermal growth factor family. It plays an important role in tumour genesis of certain types of breast cancer and its overexpression correlates with distinct diagnostic and therapeutic decisions. Nevertheless, it is still under intense investigation to improve diagnostic outcome and therapy control. In this content, we applied spectral precision distance/position determination microscopy, a technique based on the general principles of localization microscopy in order to study tumour typical conformational changes of receptor clusters on cell membranes. We examined two different mamma carcinoma cell lines as well as cells of a breast biopsy of a healthy donor. The Her2/neu receptor sites were labelled by immunofluorescence using conventional fluorescent dyes (Alexa conjugated antibodies). The characterization of the Her2/neu distribution on plasma membrane sections of 176 different cells yielded a total amount of 20 637 clusters with a mean diameter of 67 nm. Statistical analysis on the single molecule level revealed differences in clustering of Her2/neu between all three different cell lines. We also showed that using spectral precision distance/position determination microscopy, a dual colour reconstruction of the 3D spatial arrangement of Her2/neu and Her3 is possible. This indicates that spectral precision distance/position determination microscopy could be used as an enhanced tool offering additional information of Her2/neu receptor status.  相似文献   

4.
The mitogenic effects of insulin-like growth factors (IGFs) are regulated by a family of insulin-like growth factor binding proteins (IGFBPs). One member of this family, IGFBP-3, mediates the growth-inhibitory and apoptosis-inducing effects of a number of growth factors and hormones such as transforming growth factor-beta, retinoic acid, and 1,25-dihydroxyvitamin D3. IGFBP-3 may act in an IGF-dependent manner by attenuating the interaction of pericellular IGFs with the type-I IGF receptor. It may also act in an IGF-independent manner by initiating intracellular signaling from a cell surface receptor, or by direct nuclear action, or both. The possibility of a membrane-bound receptor is strengthened by recent studies which have identified members of the transforming growth factor-beta receptor family as having a role, either directly or indirectly, in signaling from the cell surface by IGFBP-3. A number of growth factors and hormones stimulate the expression and secretion of cellular IGFBP-3, which then signals from the cell surface to bring about some of the effects attributed to the primary agents. Within the cell, the apoptosis-inducing tumor suppressor, p53, can also induce IGFBP-3 expression and secretion. Since IGFBP-3 upregulates the cell cycle inhibitor, p21(Waf1), and increases the ratio of proapoptotic to antiapoptotic members of the Bcl family, it appears to exert the same effects on major downstream targets of cell signaling as p53 does. The nuclear localization of IGFBP-3 has been described in a number of cell types. IGFBP-3 may act to import IGFs or other nuclear localization signal-deficient signaling molecules into the nucleus. It may also act directly in the nucleus by enhancing the activity of retinoid X receptor-alpha and thereby promote apoptosis. All of the above phenomena will be discussed with particular emphasis on the growth of breast cancer cells.  相似文献   

5.
The progression of breast cancer depends on the establishment of a neovasculature, by a process called angiogenesis. Angiogenesis is an invasive cellular event that requires the co-ordination of numerous molecules including growth factors and their receptors, extracellular proteins, adhesion molecules, and proteolytic enzymes. TGFbeta has emerged to be a major modulator of angiogenesis by regulating endothelial cell proliferation, migration, extracellular matrix (ECM) metabolism, and the expression of adhesion molecules. It is a potent growth inhibitor of normal mammary epithelial cells and a number of breast cancer cell lines. It seems that TGFbeta exerts pleiotropic effects in the oncogenesis of breast cancers in a contextual manner, i.e., it suppresses tumourigenesis at an early stage by direct inhibition of angiogenesis and tumour cell growth. However, over-production of TGFbeta by an advanced tumour may accelerate disease progression through indirect stimulation of angiogenesis and immune suppression. The cell membrane antigen CD105 (endoglin) binds TGFbeta1 and TGFbeta3 and is preferentially expressed in angiogenic vascular endothelial cells. The reduction of CD105 levels in HUVEC leads to in vitro angiogenesis inhibition and massive cell mortality in the presence of TGFbeta1. CD105 null mice die in utero with impaired vasculature, indicating the pivotal role of CD105 in vascular development. The administration of an immunotoxin-conjugate, mab to CD105, induces long-term and complete regression of breast cancer growth in SCID mice. Therefore, CD105 is a promising vascular target for antiangiogenic therapy.  相似文献   

6.
Segmentation of medical images is a complex problem owing to the large variety of their characteristics. In the automated analysis of breast cancers, two image classes may be distinguished according to whether one considers the quantification of DNA (grey level images of isolated nuclei) or the detection of immunohistochemical staining (colour images of histological sections). The study of these image classes generally involves the use of largely different image processing techniques. We therefore propose a new algorithm derived from the watershed transformation enabling us to solve these two segmentation problems with the same general approach. We then present visual and quantitative results to validate our method.  相似文献   

7.
Both human gamma-herpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) induce neoplasia. Burkitt's and Hodgkin's lymphomas harbor EBV sequences, while KSHV has been associated with Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric castleman's disease (MCD). Each of these gamma-herpesvirus-associated malignancies displays typical characteristics of neoplasia, such as angiogenesis and cell survival. One enzyme commonly overexpressed in breast, prostate, and colon cancers is cyclooxygenase-2 (COX-2). Recently, COX-2 overexpression has been reported in herpesvirus infections in vitro. This review will outline potential mechanisms by which COX-2 may participate in herpesvirus-induced neoplasia.  相似文献   

8.
Protein kinases, the enzymes responsible for phosphorylation of a wide variety of proteins, are the largest class of genes known to regulate growth, development, and neoplastic transformation of mammary gland. Mammary gland growth and maturation consist of a series of highly ordered events involving interactions among several distinct cell types that are regulated by complex interactions among many steroid hormones and growth factors. The mammary gland is one of the few organ systems in mammals that complete their morphologic development postnatally during two discrete physiologic states, puberty and pregnancy. Thus, the mammary gland is an excellent model for studying normal development and the early steps of tumor formation. The susceptibility of the mammary gland to tumorigenesis is influenced by its normal development, particularly during stages of puberty and pregnancy. Numerous experimental and epidemiological studies have suggested that specific details in the development of the mammary gland play a critical role in breast cancer risk. Mammary gland development is characterized by dynamic changes in the expression and functions of protein kinases. Perturbations in the regulated expression or function of protein kinases or their associated signaling pathways can lead to malignant transformation of the breast. For example, overexpression of several receptor-tyrosine kinases, including human epidermal growth factor receptor and HER2/Neu, has been shown to contribute to the development of breast cancer. Since receptor-tyrosine kinases regulate several essential processes such as mitogenesis, motility, invasion, cell survival, and angiogenesis, targeting receptor-tyrosine kinases may have important implications in designing strategies against breast cancer.  相似文献   

9.
Estrogen receptor alpha (ERα/ESR1) is overexpressed in over half of all breast cancers and is considered a valuable therapeutic target in ERα positive breast cancer. Here, we designed a membrane-permeant Chaperonemediated Autophagy Targeting Chimeras (CMATAC) peptide to knockdown endogenous ERα protein through chaperone-mediated autophagy. The peptide contains a cell membrane-penetrating peptide (TAT) that allows the peptide to by-pass the plasma membrane, an αI peptide as a protein-binding peptide (PBD) that binds specifically to ERα, and CMA-targeting peptide (CTM) that targeting chaperone-mediated autophagy. We validated that ERα targeting peptide was able to target and degrade ERα to reduce the viability of ERα positive breast cancer cells. Taken together, our studies provided a new method to reduce the level of intracellular ERα protein via CMATAC, and thus may provide a new strategy for the treatment of ERα positive breast cancer.  相似文献   

10.
Cancerous cells display abnormalities in the signal transduction pathways responsible for responding to extracellular growth factors, or mitogens. Mutations that alter proteins involved in these types of pathways can lead to inappropriate or unregulated cell growth, and therefore predispose the cell to become malignant. The critical role of the Ras/mitogen-activated protein kinase (MAPK) pathway in transducing growth signals to the interior of the cell and subsequently stimulating cell growth and proliferation is underscored by the fact that roughly one quarter of all human tumors contain mutant forms of Ras proteins. A particular focus on the signaling and membrane trafficking adaptor protein known as Ras interference 1 (RIN1) will reveal how this protein can potentially play a significant role in the development of the cancerous phenotype in certain cell types. Of equal interest is the possible connection between the Ras/MAPK pathway, and subsequent expression and enzymatic activity of telomerase–a key enzyme known to be overexpressed in roughly 85% of all cancers. RIN1 is a 783 amino acid (84 kDa) cytosolic protein that is involved in key steps of growth factor receptormediated endocytosis and can potentially moderate signaling through the MAPK pathways. RIN1, with its unique ability to compete directly with Raf for activation by Ras, could potentially influence signaling through more than one of the MAPK pathways. If so, RIN1 may then be able to exert a precise and selective effect on the downstream signal(s) of a MAPK target such as telomerase.  相似文献   

11.
12.
Identifying proteins of signaling networks has received much attention, because an array of biological processes are entirely dependent on protein cross-talk and protein-protein interactions. Protein posttranslational modifications (PTM) add an additional layer of complexity, resulting in complex signaling networks. Of particular interest to our working group are the signaling networks of epidermal growth factor (EGF) receptor, a transmembrane receptor tyrosine kinase involved in various cellular processes, including cell proliferation, differentiation, and survival. Ligand binding to the N-terminal residue of the extracellular domain of EGF receptor induces conformational changes, dimerization, and (auto)-phosphorylation of intracellular tyrosine residues. In addition, activated EGF receptor may positively affect survival pathways, and thus determines the pathways for tumor growth and progression. Notably, in many human malignancies exaggerated EGF receptor activities are commonly observed. An understanding of the mechanism that results in aberrant phosphorylation of EGF receptor tyrosine residues and derived signaling cascades is crucial for an understanding of molecular mechanisms in cancer development. Here, we summarize recent labeling methods and discuss the difficulties in quantitative MS-based phosphorylation assays to probe for receptor tyrosine kinase (RTK) activity. We also review recent advances in sample preparation to investigate membrane-bound RTKs, MS-based detection of phosphopeptides, and the diligent use of different quantitative methods for protein labeling.  相似文献   

13.
Transforming growth factor-beta signaling in cancer   总被引:5,自引:0,他引:5  
  相似文献   

14.
Bone alters its metabolic and anabolic activities in response to the variety of systemic and local factors such as hormones and growth factors. Classical observations describing abundance of the nerves fibers in bone also predict a paradigm that the nervous system influences bone metabolism and anabolism. Identification of the nerve-derived signaling molecules, capable of modulating cellular activities of the bone cells, facilitates a novel approach to study the biology of skeletal innervation. Many of the signaling molecules that may act as efferent agents on the bone cells fall into the category of neuropeptides. The present article reviews current understanding of the skeletal innervation and their proposed physiological effects on bone metabolism, with a special interest to calcitonin gene-related peptide (CGRP)-containing nerves fibers. CGRP is abundantly distributed in bone via sensory nerves, especially in the epiphyseal trabecular bones. Its in vitro actions to the cultured osteoblasts and osteoclasts, together with its in vivo localization, strongly support the paradigm that the nervous system influences bone metabolism. In addition, CGRP is recently shown to be expressed endogenously by the osteoblasts. Transgenic mice with osteoblasts overexpressing CGRP are characterized by increased bone formation rate and enhanced bone volume, suggesting that CGRP indeed acts on bone metabolism not only via nervous route but also via autocrine loop. The current article also reviews the distribution of nerve fibers containing substance P (SP), another sensory nerve-specific neuropeptide, and tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine. The distinct effects of SP and catecholamines on the bone cells together with their in vivo influences manifested by experimental denervation studies suggest that the sensory and sympathetic nerves play important roles in bone metabolism.  相似文献   

15.
Almost three decades have passed since actin-cytoskeleton (acto-myosin complex) was first discovered in non-muscle cells. A combination of cell biology, biochemistry, and molecular biology has revealed the structure and function of many actin-binding proteins and their physiological role in the regulation of cell motility, shape, growth, and malignant transformation. As molecular oncologists, we would like to review how the function of actin-cytoskeleton is regulated through Ras/Rho family GTPases- or phosphoinosites-mediated signaling pathways, and how malignant transformation is controlled by actin/phosphoinositides-binding proteins or drugs that block Rho/Rac/CDC42 GTPases-mediated signaling pathways.  相似文献   

16.
Because of the great number of women who are diagnosed with breast cancer each year, and though this disease presents the lowest mortality rate among cancers, breast cancer remains a major public health problem. As for any cancer, the tumorigenic and metastatic processes are still hardly understood, and the biochemical markers that allow either a precise monitoring of the disease or the classification of the numerous forms of breast cancer remain too scarce. Therefore, great hopes are put on the development of high-throughput genomic and proteomic technologies. Such comprehensive techniques should help in understanding the processes and in defining steps of the disease by depicting specific genes or protein profiles. Because techniques dedicated to the current proteomic challenges are continuously improving, the probability of the discovery of new potential protein biomarkers is rapidly increasing. In addition, the identification of such markers should be eased by lowering the sample complexity; e.g., by sample fractionation, either according to specific physico-chemical properties of the proteins, or by focusing on definite subcellular compartments. In particular, proteins of the lysosomal compartment have been shown to be prone to alterations in their localization, expression, or post-translational modifications (PTMs) during the cancer process. Some of them, such as the aspartic protease cathepsin D (CatD), have even been proven as participating actively in the disease progression. The present review aims at giving an overview of the implication of the lysosome in breast cancer, and at showing how subproteomics and the constantly refining MS-based proteomic techniques may help in making breast cancer research progress, and thus, hopefully, in improving disease treatment.  相似文献   

17.
This study shows a strong association between cell attachment to substratum and activation of β1-integrin-signaling with resistance to the camptothecin derivative topotecan (TPT) in breast cancer cells. We propose a mechanistic-driven approach to sensitize the cells to camptothecins. ZR-75-1 anchoragedependent breast cancer cell line, its derivative 9D3S suspension cells (9D3S-S), and 9D3S cells attached to fibronectin-coated plates (9D3S-A) were treated with TPT (1 µM) or CPT-11 (40 µM) for 48 h. Programmed cell death (PCD), as shown by poly(ADP-ribose) polymerase (PARP), pro-caspase-3 and pro-caspase-9 cleavage, was observed in 9D3S-S cells but not in ZR-75-1 or 9D3S-A cells. Because p125 focal adhesion kinase (FAK) is a transducer in the β1-integrin signaling pathway, it is essential to cell adhesion and it is overexpressed in metastatic breast cancer, we hypothesized that attenuation of FAK might enhance the sensitivity of breast cancer cells to camptothecins. Moreover, inhibition of FAK gene expression by a phosphorothioated antisense oligodeoxynucleotide targeting the portion of the gene encoding amino acids 262-268, increased the sensitivity of ZR-75-1, MDA-MB-231 and MCF7 breast cancer cells to treatment with TPT or CPT-11.  相似文献   

18.
Traditional Chinese medicine (TCM) has been increasingly employed in the last decades in China for both preventing and treating a variety of cancers. 3-epi-bufotalin is an active ingredient of TCM “Chanpi” with anti-tumor potential. However, the effect and mechanism of 3-epi-bufotalin on colorectal cancers were not well disclosed. The present study demonstrated that 3-epi-bufotalin could reduce viability, trigger apoptosis, and block the cell cycle at the G2/M stage in colorectal cancer cell lines HT29, RKO, and COLO205 in vitro. Moreover, 3-epi-bufotalin inhibited the JAK1/STAT3 signaling pathway. These results indicated the anti-proliferation ability of 3-epi-bufotalin in colorectal cancer cells.  相似文献   

19.
Mast cells (MCs), hematopoietic cells of the myeloid lineage, are well-known for their pro-inflammatory nature contributing to the development of various allergic and autoimmune diseases. One of the characteristic receptors on MCs, the high-affinity receptor for IgE (FcεRI), is activated in its IgE-bound state via binding and crosslinking by polyvalent antigen. This results in its phosphorylation by the SRC family kinase LYN, initiating differential signaling pathways, eventually triggering immunological effector functions, such as degranulation and cytokine production. Few publications have reported on FcεRI-dependent but antigen-independent MC activation by antibody-mediated crosslinking of membrane molecules (e.g., transmembrane proteins and glycosphingolipids) that are both localized in membrane rafts and in close vicinity to the FcεRI. In this Viewpoint we will briefly introduce FcεRI-mediated MC stimulation, cite examples of FcεRI-proximal molecules, the crosslinking of which can cause FcεRI-dependent MC activation, and discuss the potential of certain viruses as well as auto-antibodies to act as indirect FcεRI-crosslinking agents. In latter cases, antigen-independent FcεRI-mediated pro-inflammatory MC activation could contribute to the development of detrimental cytokine storms.  相似文献   

20.
B and T-lymphocyte attenuator (BTLA) plays an immunosuppressive role by inhibiting T- and B-cell functions. BTLA is associated with a variety of diseases, especially cancer immunity. However, the function of BTLA in various cancers and its clinical prognostic value have still not been comprehensively analyzed. This study aimed to identify the relationship between BTLA and cancer from the perspectives of differences in BTLA expression, its clinical value, immune infiltration, and the correlation with immune-related genes in various cancers. Data regarding mRNA expression, miRNA expression, lncRNA expression, and clinical data of patients of 33 existing cancers were collected from the TCGA database. Target miRNA of BTLA and the lncRNA that interacts with the target miRNA were obtained from the StarBase database. Based on bioinformatics analysis methods, the relationship between various types of cancers and BTLA was thoroughly investigated, and a competing endogenous RNA network of BTLA, target miRNA, and interacting lncRNA was constructed. The Kaplan-Meier (KM) prognostic analysis of BTLA and target miRNA (has-miR-137) in various types of cancers was completed using the KM plotter. BTLA expression varied in different cancers, with statistical significance in nine cancer types. KM plotter to analyze the overall survival (OS) and regression-free survival prognosis of cancer patients revealed that the BTLA expression was statistically different in the OS of 11 types of cancers out of 21 types of cancers; the OS of 8 type of cancers was also statistically different. Correlation analysis of tumor immune genes revealed a positive correlation of BTLA expression with immunosuppressive gene (CTLA4 and PDCD1) expression. Gene Set Enrichment Analysis showed that BTLA and its co-expressed genes mainly act through biological processes and pathways, including immune response regulation, cell surface receptor signaling pathway, antigen binding, antigen receptor-mediated signaling pathway, and leukocyte migration. BTLA has the potential as a prognostic marker for CLL, COAD, NSCLC, and OV and a diagnostic marker for CLL, COAD, and KIRC. BTLA has a close and complex relationship with the occurrence and development of tumors, and cancer immunotherapy for BTLA is worthy of further analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号