首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究了In(Ⅲ )和Fe(Ⅲ )在H2 SO4 水相 (pH0 4~ 2 0 )中存在的主要离子形态 ,确定了P5 70 8萃取铟 (铁 )两种机理对应的平衡反应方程式 ;用热力学方法推导这两个竞争反应相互转化的判别方程式 ,实验及计算结果表明萃取率低时 ,SO2 -4 参与萃取 ;考察不同平衡 pH、c(H2 A2 )下两种萃合物在有机相比例 ,分析表明经串级萃取后含SO2 -4 的萃合物约占有机相中萃合物总量的 1/ 3~ 1/ 5 ,含SO2 -4 的萃合物难于反萃  相似文献   

2.
H2SO4介质P5708萃取铟、铁热力学平衡研究   总被引:1,自引:0,他引:1  
研究了In(Ⅲ)和Fe(Ⅲ)在H2SO4水相(pH0.4-2.0)中存在的主要离子形态,确定了P5708萃取铟(铁)两种机理对应的平衡反应方程式;用热力学方法推导这两个竞争反应相互转化的判别方程式,实验及计算结果表明萃取率低时,SO4^2-参与萃取;考察不同平衡pH、c(H2A2)下两种萃合物在有机相比例,分析表明经串级萃取后含SO4^2-的萃合物约占有机相中萃合物总量的1/3-1/5,含SO4^2-的萃合物难于反萃。  相似文献   

3.
钨碱性萃取是一种钨湿法冶金清洁生产技术,所用的三辛烷基甲基氯化铵(N263)萃取剂存在转型率低、操作复杂等问题,不利于该技术的推广应用。采用自制的钨碱性萃取剂三长链烷基甲基碳酸盐(GW05),在无需转型的前提下,对Na2WO4溶液进行了萃取、反萃取和再生实验,并与N263的钨萃取性能进行了对比,取得了比较好的效果。较优的萃取条件为:油水比(O/A)2∶1,搅拌时间10 min,萃取温度20℃,料液p H值9~14。在相同的萃取条件下,GW05的单级萃钨率较N263萃取剂要高5%~10%。绘制了GW05和N263的萃取等温线,其萃钨饱和容量大致相同,分别为80.69和79.33 g·L-1。进行了串级错流萃取实验,对于WO3含量为114.28 g·L-1的Na2WO4溶液,N263在3级萃取的条件下可以达到99.78%的钨萃取率,GW05在2级萃取的条件下即可达到99.26%的钨萃取率。用2.5 mol·L-1的NH4HCO3溶液对GW05和N263萃取后所得的萃合相进行串级错流反萃取对比实验,GW05的萃合相表现出较好的反萃取性能。将GW05和N263反萃后所得有机相用1.0 mol·L-1的Na OH溶液进行再生,GW05和N263仍然具有较好的萃取性能。  相似文献   

4.
研究了硫酸体系中质子化的叔胺类萃取剂N235对钒萃取性能的影响及萃取机制。实验过程中考察了萃取振荡时间、水相初始p H、萃取剂浓度、SO2-4浓度对钒萃取性能的影响。结果表明:在有机相组成为5%N235+5%仲辛醇+90%磺化煤油,相比(O/A)为1∶2的条件下,N235萃取钒的平衡时间为2 min;水相初始p H在2.5~4.0之间时,钒的萃取率随初始p H的增大略微下降;当初始p H为2.5时,钒的萃取率达到最大,为94.46%。SO2-4离子浓度对萃取率有一定的影响,萃取率随其浓度的增加而减小;萃取率随着N235初始浓度的增加而增大,浓度过大不利于萃取过程的进行。当水相p H为2.0~4.0时,水相中钒主要以H2V10O4-28,HV10O5-28等络合阴离子形式存在。采用饱和容量法和等摩尔系列法研究了N235对钒的萃取机制,当水相平衡p H值为2.0时,萃合物中钒与N235的摩尔比,即萃合比([V]/[N235])为2.5;平衡p H为4.0时,萃合比为2.0,并分别得到了相应的萃取方程。  相似文献   

5.
PMBP缩2-ABT/TBP/离子液体双水相对稀土离子的协同萃取   总被引:2,自引:0,他引:2  
研究了1-苯基-3-甲基-4-苯甲酰基-吡唑酮-5缩2-氨基苯并噻唑(PMBP缩2-ABT,简称HA)与中性磷类萃取剂磷酸三丁酯(TBP)在离子液体双水相体系中对稀土离子的萃取行为.考察了萃取剂浓度、协萃剂浓度、水相pH值、盐的加入量及温度对萃取分配比的影响.结果表明,PMBP缩2-ABT与TBP具有显著协萃作用.当pH=4.3,萃取剂与协萃剂浓度比为4:l时,二者协萃效率最高.用斜率法确定了协萃合物的组成为[LaA·HA·TBP]2+.  相似文献   

6.
针对碱性萃取分离钨、铝过程,根据同时平衡和物质守恒定律,应用现有的热力学数据绘制了25℃时W/Al-H_2O系的溶解组分浓度-pH图,Na_2CO_3-NaHCO_3-H_2O系R-pH图(R为萃取剂中(R4N)2CO_3与(R4N)2CO_3+R4NHCO_3物质量比例),利用热力学平衡图对碱性萃取钨铝分离过程进行研究。结果表明:[W]T,[Al]T分别为0.5,0.1 mol·L-1,溶液pH为11.5~14.0时钨、铝分别以WO_4~(2-),Al(OH)-4存在;pH为4.0~11.5时铝部分以Al(OH)3(am)沉淀析出,钨以阴离子形态存在溶液中;Na_2CO_3-NaHCO_3-H_2O系中,NaHCO_3含量增加,溶液pH值降低。试验表明,Al(OH)-4能与季铵盐形成萃合物存在有机相中,不会出现沉淀或影响萃取;季铵盐对WO_4~(2-)的结合能力强于Al(OH)-4;碳酸氢型萃取剂参与钨萃取反应降低萃余液溶液pH值,萃余液pH值低于11.46时铝水解产生氢氧化铝沉淀。串级试验表明,控制萃余液pH为11.59,通过12级逆流萃取,钨、铝的萃取率分别为99.17%,1.20%,说明碱性萃取工艺能够高效地分离钨铝。  相似文献   

7.
本文研究某些高分子量胺类,如叔胺(N_(235)和TBA)和季铵盐(N_(263))从盐酸溶液中萃取金(Ⅲ)。考查了水相酸度、被萃金属和萃取剂浓度,以及温度诸因素对萃取的影响。用等温线法、平衡移动法、紫外吸收光谱和红外光谱等方法确定了萃合物的组成和萃取平衡的机理,表明萃取过程属阴离子交换反应,萃合物中金属与试剂结合比均为1:1。对某些体系的反萃过程亦作了初步试验。  相似文献   

8.
针对石煤钒矿空白焙烧-加压碱浸-除Si工艺所得含V溶液的萃取提V过程,合成了新型HCO_3~-型季铵盐——OMEA。将该季铵盐与N263季铵盐进行对比实验发现,在不同pH值条件下对含V料液进行萃取,200g/L的OMEA体系和150g/L的N263体系中V萃取率均随pH值的升高而下降;两者萃V饱和容量均较低,OMEA体系的萃合比低于N263的萃合比,OMEA体系的季铵盐利用率更高,对V结合能力更强;在反萃过程中,NaOH溶液对负载有机相具有较好的反萃效果,且OMEA体系的反萃率比N263体系的反萃率高3%左右。多次再生对N263和OMEA季铵盐萃取剂的萃V饱和容量影响不大,萃取剂稳定性较强。故OMEA体系在石煤钒矿碱浸萃取提V工艺中具有较好的应用前景,有望解决N263存在的饱和容量小、分相时间长的问题。  相似文献   

9.
<正> 西班牙的科卡等人对广泛应用于钨、钼分离的萃取剂Alamine336及DEHPA在硫酸溶液中萃取钨、钼进行了研究。萃取剂以10%(体积)溶于煤油中,并加入2%(体积)的2-乙基已醇作调节剂。萃钼用Alamine336萃钼试验中,水相起始pH=1~5,有机相/水相(O/A)=1/4~4,水相起始钼浓度1~10g/1 Mo,萃取温度25℃。试验表明萃取钼的回收系数主要受水相  相似文献   

10.
KSCN-双(正-辛基亚磺酰)乙烷-乙酸丁酯体系萃取钯的研究   总被引:5,自引:2,他引:3  
研究了KSCN存在条件下双 (正 辛基亚磺酰 )乙烷 (简称BOSE) 乙酸丁酯体系对钯的萃取。当盐酸浓度高于 1mol/L时 ,KSCN BOSE/乙酸丁酯体系对钯的萃取率高于 99% ,说明以SCN-作为无机离子配体 ,BOSE作萃取剂时对Pd(Ⅱ )有强萃取作用。斜率法测定萃合物的化学式组成为Pd∶BOSE∶SCN-=1∶2∶2。测定萃取前后水相和有机相的电子吸收光谱 ,特征吸收峰的移动表明生成了新的萃合物。分别测定KSCN、BOSE和萃合物的红外光谱 ,表明SCN-和BOSE均是由硫原子与钯配位。萃取反应为配位体取代反应  相似文献   

11.
本文对N-263在萃取钨和钼的过程中发生的萃取机理与pH值的改变进行了测量和研究。试验结果表明,季铵盐,N-263,在从钨酸钠溶液中萃取钨和钼的过程中,萃取前pH与萃取后的平衡pH之间发生了规律性改变;平衡pH对于分配比与分离系数的影响起到了至关重要的作用。严格控制萃取反应的平衡pH值,不仅影响到分配比,而且,影响到化学性质相近的钨和钼之间的分离效率。萃取剂,N-263对于钨和钼等阴离子的萃取反应和机理,是由萃取终点的平衡pH决定的。对于酸性溶液而言,萃取过程发生pH的升高现象,对于碱性溶液而言,萃取将发生pH的下降现象。萃取机理研究表明,萃取钨的最佳平衡pH为7。如果将溶液萃取前的pH值调整到接近中性,那么平衡pH变化极小。  相似文献   

12.
用叔胺N235从硫酸铝溶液中萃取除铁   总被引:3,自引:0,他引:3  
采用叔胺N235从硫酸铝溶液中萃取除铁,研究了水相pH、萃取剂体积分数和温度对铁萃取率的影响。为防止N235萃取铁时出现乳化现象,研究了脂肪羧酸、1-辛醇、TBP对分相的影响。结果表明:3种试剂均可改善N235萃取铁时的乳化,但脂肪羧酸、1-辛醇对N235萃取铁有抑制作用,TBP对N235萃取铁有协同作用;有机相组成为30%N235-10%TBP-55%煤油、水相pH为0.5~1.0、萃取温度为25℃,经3级逆流萃取后,水相中铁质量浓度由8.36g/L降低至0.019g/L,总萃取率达99.77%;萃余水相经浓缩结晶得到铁质量分数为0.003 7%的硫酸铝。  相似文献   

13.
本文研究了碳酸丙烯酯-氯仿溶液萃取金(Ⅲ)的行为,探讨了水相pH、金属离子浓度、萃取剂浓度、水相氯离子浓度、相接触时间、温度、稀释剂以及共存金属离子对金萃取的影响。借平衡移动法确定了萃合物的组成,并据此讨论了可能的萃取机理,讨论了反应的焓变和表观萃取平衡常数。红外光谱指出系由试剂羰基和金属共配位。  相似文献   

14.
三正辛胺(TnOA)萃取Cr(Ⅵ)的机理研究   总被引:1,自引:0,他引:1  
段群章 《湿法冶金》2001,20(3):141-148
研究了用TnOAnCH3(CH2)6CH3H2SO4体系和TnOACHCl3H2SO4体系萃取Cr(Ⅵ)的机理及萃合物组成.考察了水相酸度,Cr(Ⅵ)、萃取剂与SO2-4浓度,萃取时间及温度等因素对萃取的影响.用饱和法、摩尔比法、等摩尔系列法和IR法确定了萃合物的组成和萃取平衡机理.结果表明,萃取过程属阴离子交换机理,萃合物的组成因pH值和c(Cr(Ⅵ))不同而异;pH值不同,Cr(Ⅵ)的型体也不一样;当c(TnOA)一定,pH=1.0,c(Cr2O2-7)=0.1000mol/L时,形成的萃合物是(R3NH)2Cr2O7(2∶1);当pH=-1.0,c(Cr2O2-7)=0.01945mol*L-1时,形成的萃合物是R3NHHCrO4(1∶1);SO2-4不被萃取,c(TnOA)及时间和温度对Cr(Ⅵ)的萃取影响不大.试验结果与Deptuta认为的Cr(Ⅵ)的型体为Cr2O2-7,Федоров和Жданов认为的Cr(Ⅵ)的萃取型体为CrO2-4的结论不同.  相似文献   

15.
M5640+P204+P507萃取净化镍电解液   总被引:2,自引:0,他引:2  
对硫酸镍电解液的萃取净化除杂进行了系统研究。采用M5640对铜离子进行除杂的条件为:pH3.0,相比1∶1,萃取剂体积浓度15%,振荡时间5min,在此条件下铜离子的萃取率大于99.83%,萃余液含铜已达到5N镍电解液标准要求。去除铜离子之后,采用P204对电解液进行除杂,试验条件:pH4.0,相比2∶1,萃取剂体积浓度25%,振荡时间7min,温度20℃。萃余液再用P507萃取除杂,试验条件:用氢氧化钠溶液均相制皂75%,提高待萃液当中钴离子的含量至4.19g/L,即Co/Ni为1/10,4级萃取,控制水相pH4~5。最终萃余液中各杂质离子的含量均达到生产5N镍的电解液标准。  相似文献   

16.
研究了用Mextral336A和Mextral204P协同萃取稀土元素。首先考察Mextral336A、Mextral204P萃取稀土和萃取盐酸的能力,Mextral336A萃取氢离子的同时几乎不萃取稀土。Mextral204P中添加适量Mextral336A能够显著提高Mextral204P萃取稀土的能力,Mextral204P与Mextral336A最佳体积比为2∶3;对于协同体系,水相初始pH2.75时,从水相中萃取氢离子;水相初始pH2.75后,有机相向水相释放一定量氢离子;水相初始pH=2.75时,既不从水相吸收氢离子也不向水相释放氢离子;稀土钐的萃合物为SmA(HA_2)_2·(R_3N)·(R_3NHCl)——3,混合有机相具备较好的反萃取性能,且可循环利用。  相似文献   

17.
硫磷混酸体系中钒的萃取实验研究   总被引:1,自引:0,他引:1  
以某高磷钒矿直接活化硫酸浸出并经预净化的溶液作为研究对象,用N263进行萃取反萃后经过直接沉钒,制得V2O5产品.实验主要研究了水相平衡pH、萃取剂浓度、添加剂浓度、相比、逆流萃取及反萃级数对硫磷混酸体系中钒萃取率的影响.实验确定了N263最佳萃取工艺条件:有机相浓度取15%N263-5%仲辛醇-磺化煤油,O/A=1:3,常温振荡10 min,常温静置10 min,萃取平衡pH=2,经5级逆流萃取,钒的萃取率可达99.51%;最佳反萃工艺条件:反萃剂浓度取1 mol·L-1 NH4 OH4 mol·L-1 NaCl,O/A=3:1,常温振荡10 min,常温静置10 min,反萃平衡pH=8.5,经4级逆流反萃,钒的反萃率可达99.58%;经直接沉钒所得V2O5产品质量达到99.54%,符合GB3283-87V2O598质量要求.  相似文献   

18.
已获得了25℃时用 Alamine336和 DEHPA(二-2-乙基己基磷酸)从硫酸溶液中萃取钼与钨以及用 DEHPA 从硫酸溶液中提取钼-钨溶液的平衡数据。将萃取剂(10%体积)溶于煤油中,并用乙基己醇(2%体积)作调节剂。报道了钼的初始浓度在1~10克/升之间和钨在5~10克/升之间,萃取数据与初始 pH(下表为 pH°)、有机相与水相体积比和钨钼比的函数关系。Alamine336能萃取钼(pH°1~2)和钨(pH°3),产率较高,而 DEHPA 只能选择性萃取钼(pH°3)。在 pH°3和有机相与水相的体积比为1/2时,达到钨存在下萃钼的最好选择性。  相似文献   

19.
为积极响应国家“双碳”目标,开发高效选择性钒页岩酸浸液净化分离工艺对页岩提钒行业意义重大。在本研究中,从溶液pH值、杂质离子(铁、铝和镁)浓度和反萃剂3个因素对比了新型羟肟类萃取剂Mextral 984H和有机磷类萃取剂P204的萃取行为。结果表明,Mextral 984H的最佳萃取pH值在0.5~1.5,P204的最佳萃取pH值在1.5~2.4,相比于P204,Mextral 984H与钒形成的钒萃合物结构更稳定,钒氧键键长值更小,分子间隙更大,钒萃合物在酸性环境中更容易稳定存在。Fe(Ⅲ)、Al(Ⅲ)和Mg(Ⅱ)对Mextral 984H萃取V(Ⅴ)的影响较小,而在P204中,Fe(Ⅲ)对V(Ⅳ)的萃取影响较大,将Al(Ⅲ)和Mg(Ⅱ)的浓度控制在10 g/L以下,可降低Al(Ⅲ)和Mg(Ⅱ)的共萃率。碳酸钠和草酸对Mextral 984H负载有机相的单级反萃率均超过80%。  相似文献   

20.
本文研究了三辛胺——苯溶液从盐酸介质中萃取Pd(Ⅱ)的平衡。考察了萃取剂浓度、水相酸度、氯离子浓度以及温度等变化对萃取的影响。结果表明,萃取机理为阴离子交换反应。对不同条件下萃合物的组成也作了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号