首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
为提高风电功率超短期预测精度,针对目前的风电功率超短期组合预测算法都是将各子预测算法的权重设为固定值,导致风电功率超短期预测结果精度不高的问题,提出一种改进的风电功率超短期组合预测算法。该算法包含BP神经网络、天气预报、实测功率外推法等子预测算法,结合实际运行情况判断各子预测算法的执行结果,并根据执行结果动态改变各子预测算法的权重,以保持较高的预测精度。实际应用效果表明:该算法预测精度较高,运行效果较好,4h内的预测均方根误差在10%以内。  相似文献   

2.
一种短期风电功率集成预测方法   总被引:5,自引:0,他引:5       下载免费PDF全文
为提高短期风电功率预测精度,缩短模型训练时间,提出了一种短期风电功率集成预测方法。根据风速功率曲线和风速频率特征,将风速划分为高、中、低三段,并对每段的风速功率特征进行统计分析。高、低风速段功率波动较大,使用最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)方法可取得较高的预测精度。中风速段风速数据点较多,且风速和功率有明显的物理关系,使用高斯(Gaussian)模型预测。并用风速功率等级表对各段预测的结果进行订正,保证了算法的稳定性。用上海某风电场2014年的历史数据,验证了Gaussian模型以及高、中、低风速段对应的预测算法选取的合理性。与LSSVM预测方法相比较,集成预测方法既提高了预测精度又缩短了预测时间,适合风电场短期功率的实时预测。  相似文献   

3.
风电功率精确预测是电力系统稳定运行的必要条件之一。文章以中国某一地区收集到的风速数据为基础,通过一定的分析方法建立了SVM风电功率预测模型,采用以粒子群为优化算法的PSO-GA混合算法来优化SVM预测模型。通过分析SVM、GA-SVM、PSO-GA-SVM三种模型的预测结果,并与实验数据相比较,仿真表明PSO-GASVM模型预测精度更高,PAO-GA混合算法优化效果更好。  相似文献   

4.
黄辰  吴峻青 《华东电力》2014,42(7):1408-1410
风力发电近年来已进入规模化发展阶段。由于风能的随机性和间歇性特征,风电场输出功率往往具有波动性,因此其功率预测对接入风电的电力系统的安全稳定运行及保证电能质量有着重要意义。基于人工神经网络模型,对风电场输出功率进行24小时短期预测,并分析该预测模型的可靠性和精确性,提出改进方法和进一步研究方向。  相似文献   

5.
准确的风电功率预测对电力系统的安全稳定运行十分重要。从风功率统计特征出发,提出进行风电功率超短期预测的动态谐波回归方法。首先利用风电功率与不同高度风速的三次函数关系构建回归模型;然后采用自回归移动平均 模 型(auto regressive integrated moving average model,ARIMA)对回归的残差建模来充分利用风电功率时间序列的历史信息;最后针对风电功率的日季节性特点,引入傅里叶级数形成最终预测模型。经风电场实际数据计算验证表明,该方法有效弥补了ARIMA方法和回归方法的不足,减小了风电预测均方根误差(root mean squared error,RMSE),提高了风电预测精度。通过和持续法、ARIMA 2种现有预测方法比较,验证了所提模型具有更高的预测精度,说明该方法具有一定的实际应用价值。  相似文献   

6.
提出一种回归卷积神经网络与支持向量回归组合模型 (RCNN-SVR),采用该模型预测短期风力发电功率. 首先搭建了一种回归卷积神经网络 (RCNN)模型;由于 RCNN 存在计算量大的问题,因此利用 RCNN 从数据集中 提取特征因素,并用特征因素训练支持向量回归 (SVR)对风电输出功率进行预测;最后采用某风电场数据集进行验证,结果表明 RCNN-SVR模型比单独使用的传统 RCNN 模型或支持向量机具有更高的准确率.其中,RCNN-SVR 模型的 CV-RMSE、MAE和 MAPE分别为0.0998、0.3928和0.5468,说明 RCNN-SVR模型有效地提高了预测精度 和输出结果的稳定性.  相似文献   

7.
为提高短期风电功率预测精度,提出一种基于IAFSA-BPNN的短期风电功率预测方法。该方法通过改进的人工鱼群算法来优化BP神经网络的权值和阈值,从而提高BP神经网络的收敛速度和泛化能力。利用2014年上海某风场实测数据对新算法进行检验。试验结果表明,改进的人工鱼群算法一定程度上克服了原算法后期搜索的盲目性较大,收敛速度减慢,搜索精度变低的缺陷。IAFSA-BPNN混合算法在预测的稳定性和精度、收敛速度等方面优于BPNN、AFSA-BPNN算法。IAFSA-BPNN算法不仅能提高短期风电功率预测的精度,而且改善了预测结果稳定性。  相似文献   

8.
准确可靠的风电功率预测对电力系统调度、风电场的效益和电网的安全稳定运行具有重要意义。为了提高超短期风电功率预测的准确性,提出了一种基于自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和改进野狗优化算法(improved dog optimization algorithm,IDOA)优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的组合模型预测超短期风电功率方法。该方法先采用CEEMDAN分解方法将原始的数据分解来降低原始数据的复杂性和不稳定性,将分解后的所有序列进行偏自相关方法分析,选出重要性较大序列作为IDOA-BiLSTM模型的输入,最后通过IDOA-BiLSTM模型进行超短期风电功率预测。采用甘肃某风电场实测数据为数据集,进行训练模型和预测分析,结果表明所提出的超短期风电功率预测模型具有较高的预测精度,具备实际应用的可行性。  相似文献   

9.
传统灰色风速预测模型累加处理时不能预测突变风速,使风电功率预测误差过大.采用数值逼近算法对传统灰色GM(1,1)预测模型进行优化改进,以优化的灰色GM(1,1)预测模型对未来时段风速进行预测,突变风速预测误差降低了34.3%.再将优化风速预测模型和时间序列动态神经网络相结合,构建出风电功率预测模型.应用该模型对酒泉地区某风电场现场数据进行仿真测试,预测效果可信度大于93%.  相似文献   

10.
杨茂  董骏城 《中国电力》2016,49(12):127-132
高精度的风电功率预测对于电力系统的安全经济运行具有重要意义。基于大量风电功率历史数据,结合相关性分析和K近邻算法,提出一种新的多输出模型的风电功率超短期多步预测方法。以东北地区2个风电场实测风电功率数据为例进行分析计算,使用国家能源局提供的风电功率实时预测评价指标对两种多步预测方式进行评价。结果表明该方法预测精度高,方法简单,具有一定的工程实用价值。  相似文献   

11.
为提高短期风电功率的预测精度并对功率预测的不确定性进行量化,提出了基于高斯过程回归(Gaussian Process Regression,GPR)和Bootstrap Aggregation (Bagging)的组合预测方法。针对GPR的不稳定性和计算量大的特点,引入了Bagging和训练数据完全条件独立下的近似方法(Fully Independent Training Conditional Approximation,FITC)。同时,在贝叶斯决策 (Bayesian Committee Machine, BCM)的基础上,提出了一种新的权重组合策略。实验表明,基于Bagging和FITC的GPR方法在稳定性、预测精度和训练时间的消耗上都优于传统的GPR方法。在风电功率预测中,改进的GPR可以给出较准确的置信区间,且与极限学习机、最小二乘支持向量机相比较,该方法的预测精度也有明显提高。  相似文献   

12.
为提高风电功率短期预测的精度,提出一种基于改进TLBO优化LSSVM的风电功率短期预测方法。首先对基本TLBO算法中的‘教’阶段进行改进,在采用自适应教学因子的同时改变所有搜索个体的平均值,从而能够自适应的提高TLBO在整个搜索空间的性能;然后改进TLBO算法的‘学’阶段,为维持种群的多样性,避免TLBO算法过早收敛和陷入局部最优,在学习阶段引入高斯变异算子;最后用改进的TLBO优化构建的LSSVM预测模型。以上海北沿风电场和莱州风电场实测数据为例,仿真结果表明,与PSO和TLBO优化LSSVM相比,改进的TLBO优化LSSVM方法对短期风电功率预测具有更好的稳定性和更高的准确性。  相似文献   

13.
王聪  高得莲  赵轩 《电源技术》2016,(5):1084-1086
风电场输出功率具有随机性、间歇性以及可控性弱等特点,提高风电功率预测精度对含有大规模并网风电的电力系统安全经济运行具有重要意义。基于支持向量机(SVM)建立短期风电功率的均值预测模型,利用Copula函数对多时段风电功率的预测误差进行相依性建模,结合风电功率的预测均值和预测误差相依性结构,形成短期风电功率场景集合,可以直接用于机组组合等决策过程中。基于某实际风电场进行仿真分析,结果表明,考虑预测误差相依结构的场景集合能够包含风电功率实际值曲线,显示了方法的有效性。  相似文献   

14.
准确的风电功率预测有利于电力系统运行、峰值调节、安全分析和节能减耗。提出了一种基于鲁棒回归(Robust Regression, RR)和变分模态分解(Variational Mode Decomposition, VMD)的长短时记忆(Long Short-Term Memory, LSTM)模型的风电功率预测方法。先使用RR处理采集数据的缺失值和异常点。再利用VMD得到风电功率序列以消除噪声并挖掘原始序列的主要特征。最后采用LSTM对每个分解序列的历史时间序列进行学习并完成预测,并通过重构所有序列的预测值获得风电功率的最终结果。使用所提出的方法对华北某一风电场风电功率进行预测,将预测结果与其他模型对比。结果表明,使用RR-VMD-LSTM方法能显著改善预测性能,降低风电功率预测误差。  相似文献   

15.
基于风速升降特征的短期风电功率预测   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高短期风电功率预测精度,提出了基于风速升降特征的短期风电功率预测方法。该方法分析风速上升或下降对风力发电的影响,根据风速升降特征,为风速添加标记值,增加训练样本维度,从而提高功率预测精度。用上海某风电场2014年9月至2015年9月数据对算法进行验证,并对比最小二乘支持向量机(LSSVM)、极限学习机(ELM)、遗传BP神经网络(GA-BP)三种方法的预测结果。实验结果表明,在风电功率预测中引入风速升降特征能够明显提高了模型的预测精度,适合风电场的短期功率预测。  相似文献   

16.
风速预测是风电场风电功率预测的基础与前提,以数值天气预报(WRF模式)为基础进行风速预测,为了提高WRF模式预测的准确性,采用最小二乘支持向量机(Least Squares Support Vector Machine, LSSVM)对WRF模式输出的风速进行订正。同时,为提高LSSVM算法的精确度和减小拟合过程的复杂度,采用粒子群优化算法(Particle Swarm Optimization, PSO)对其参数进行优化。试验结果表明:采用LSSVM订正可以进一步减小WRF模式预测风速的误差,再经过PSO优化后,相对均方根误差和相对平均绝对误差降低了5%~10%,均方根误差下降了0.5 m/s。与未经优化的LSSVM以及极限学习机(ELM)算法对比分析后得出,粒子群优化最小二乘支持向量机(PSO-LSSVM)对WRF模式预测的风速有较好的订正效果,能进一步提高风速预测的准确性。  相似文献   

17.
当光伏发电系统所连电网发生短路故障时,光伏电源的故障电流会发生暂态突变,但由于逆变器控制电路的保护作用,短路电流的幅值较小,因而传统的保护方法对光伏并网发电系统不一定适用。为寻求适合光伏并网发电系统的保护方法,建立了基于PSCAD/EMTDC的光伏并网发电系统仿真模型,对其短路电流的特性进行了仿真分析,利用希尔伯特-黄变换(HHT)对故障电流的波形进行分解,提出一种基于HHT的光伏并网发电系统保护方法,并进行了算例分析。结果表明,在含有光伏发电的电网发生短路故障时,该保护方法具有一定的有效性和可行性。  相似文献   

18.
牛晨光  刘丛 《中国电力》2011,44(11):73-77
随着风电机组装机容量的持续高速增加以及大规模风电场的建设,各个国家(地区)的电网对风电的重视程度也在增加,风电场发电功率的短期预测对于风电场并网以及电网的调度起着至关重要的作用。通过对风电场发电功率的时间序列进行分析,表明该序列具有混沌属性,并在此基础上,利用相空间重构理论建立了关于风力发电功率的RBF神经网络与BP神经网络预测模型,并进行了实际预测。通过对结果进行对比分析,显示该模型可以得到较高的短期发电功率预测精度,更好地满足实际现场需要。  相似文献   

19.
基于灰色-辨识模型的风电功率短期预测   总被引:2,自引:0,他引:2       下载免费PDF全文
为了准确预测风电机组的输出功率,针对实际风场,给出一种基于灰色GM(1,1)模型和辨识模型的风电功率预测建模方法,采用残差修正的方法对风速进行预测,得出准确的风速预测序列。同时为了提高风电功率预测的精度,引入FIR-MA迭代辨识模型,从分段函数的角度对风电场实际风速-风电功率曲线进行拟合,取得合适的FIR-MA模型。利用该模型对额定容量为850 kW的风电机组进行建模,采用平均绝对误差和均方根误差,以及单点误差作为评价指标,与风电场的实测数据进行比较分析。仿真结果表明,基于灰色-辨识模型的风电机组输出功率预测方法是有效和实用的,该模型能够很好地预测风电机组的实时输出功率,从而提高风电场输出功率预测的精确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号