首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用H_2SO_4、黏土及CaCO_3对粉煤灰进行复合改性。研究了复合改性粉煤灰对含镍电镀废水处理效果的影响,并考察了废水pH值及反应温度对Ni~(2+)吸附效果的影响。此外,研究了Cu~(2+)、Zn~(2+)的存在对Ni~(2+)去除率的影响。结果表明:粉煤灰经复合改性后,其对Ni~(2+)的吸附性能显著提高;废水pH值对Ni~(2+)去除率的影响较大,最佳的废水pH值为6;升高温度有利于提高Ni~(2+)的去除率;Cu~(2+)和Zn~(2+)的存在,使得Ni~(2+)的去除率显著降低。  相似文献   

2.
采用电解-催化还原法回收化学镀镍废液中的镍。研究了硼氢化钠的体积分数、pH值、温度、电流密度及电解时间对Ni~(2+)回收率的影响。结果表明:在硼氢化钠40mL/L、pH值8、温度80℃、电流密度150A/m~2、电解时间60min的条件下,Ni~(2+)的回收率高达99.56%。回收后的化学镀镍残液经过离子交换树脂,可使残液中Ni~(2+)的质量浓度进一步降至0.1mg/L以下。  相似文献   

3.
采用电吸附法对模拟含镍废水进行处理。考察了电压、极板间距、pH值、原水的质量浓度及进水流量对Ni~(2+)去除率的影响,并在最优条件下进行循环电吸附/脱附实验。结果表明:在电压1.6V、极板间距0.8cm、pH值7.0、原水的质量浓度40mg/L及进水流量20mL/min的条件下,Ni~(2+)的去除率可以达到96.89%;经过5次电吸附循环后,Ni~(2+)的吸附性能依旧显著,Ni~(2+)的去除率保持在81.23%。  相似文献   

4.
采用Fenton-离子交换-DTC重金属捕捉剂-盘式过滤技术处理PCB线路板厂镀镍车间的含镍清洗废水。结果表明:在pH值为4.0、硫酸亚铁的质量分数为1.5%、双氧水的质量分数为2.0%的条件下进行Fenton处理,废水中配位态镍可以基本转化为离子态镍,COD低于50 mg/L,TP低于0.5 mg/L,Ni~(2+)低于5 mg/L;Fenton处理后的废水经过D403离子交换树脂,出水中的Ni~(2+)低于1 mg/L;投加质量分数为0.5%的DTC重金属捕捉剂并结合后续盘式过滤,可以保证出水中的Ni~(2+)低于0.5 mg/L,达到《电镀污染物排放标准》(GB 21900—2008)中表2"一类污染物重金属镍的车间排放要求",废水可进入中水回用系统。  相似文献   

5.
研究了粉状活性炭对废水中Cu~(2+)、Ni~(2+)的吸附行为,考察了吸附剂投加量、pH、吸附时间等因素对活性炭吸附Cu~(2+)、Ni~(2+)的影响。试验结果表明:溶液pH和粉状活性炭投加量是影响金属离子吸附的重要因素,两种重金属的去除率均随活性炭投加量的增大而增加;当在pH值为7.5、吸附时间为60min、活性炭用量为6.0g/L、温度为25℃的最佳吸附条件下,Cu~(2+)、Ni~(2+)的去除率分别为86.60%和76.08%。  相似文献   

6.
以Ni~(2+)、总磷和氨氮为考察对象,采用Fenton氧化和沸石吸附联合处理化学镀镍废水。探讨了Fenton破络及协同氧化非正磷酸盐时,H_2O_2的质量浓度、m(Fe~(2+))∶m(H_2O_2)、初始pH值对Ni~(2+)和总磷去除率的影响。另外,研究了沸石吸附氨氮时,沸石量、吸附时间、吸附pH值对氨氮去除率的影响。结果表明:当H_2O_2的质量浓度为6.66g/L、m(Fe~(2+))∶m(H_2O_2)为0.06、初始pH值为3时,破络完全,非正磷酸盐转化率为99.45%;同时,Ni~(2+)和总磷的去除率分别达到99.72%和91.88%。当沸石量为8g/100mL、pH值为7、反应时间为60min时,氨氮的去除率为86.30%。  相似文献   

7.
分别采用Fenton法及氢氧化物沉淀-Fenton法对模拟电镀废水进行处理。结果表明:单独采用Fenton法处理模拟电镀废水,当废水pH值为3、Fe~(2+)与H_2O_2的物质的量比为1.1时,虽然废水中COD的去除率能够达到91.6%,但Zn~(2+)、Cu~(2+)、Ni~(2+)的去除效果并不理想。先采用氢氧化物沉淀法对模拟电镀废水进行预处理,再采用Fenton法进行处理,COD的去除率可以达到93.6%,同时Zn~(2+)、Cu~(2+)、Ni~(2+)三者的去除率也均能达到98%以上。  相似文献   

8.
采用电解-捕捉沉淀联合工艺处理含镍电镀废水并回收镍。结果表明:在pH值为9、电解时间为3h、温度为55℃的条件下电解,废水中Ni~(2+)的质量浓度由4 549mg/L降至440mg/L,镍的回收率达到78%左右;在C_3H_6NS_2Na·2H_2O的质量为1.3g、捕捉时间为15min的条件下捕捉Ni~(2+),废水中Ni~(2+)的质量浓度小于1.0mg/L,达到国家排放标准。  相似文献   

9.
为提高粉煤灰对废水中Ni~(2+)的吸附能力,本研究对粉煤灰进行复合改性,制备得到M-B-A·S-FA。通过L_9(3~4)正交优化实验,确定了复合改性粉煤灰吸附含镍废水的较优的工艺条件。结果表明,粉煤灰投加量为4g、pH值为8、吸附时间为40min、吸附温度为30℃时,Ni~(2+)的去除率达到99.1%。该工艺操作简单,去除率高,具有良好的经济效益和社会效益。  相似文献   

10.
《化学工程》2017,(3):1-5
从受污环境中分离筛选出对Ni~(2+)有去除活性的产朊假丝酵母菌y188。采用响应曲面法对游离细胞去除废水中Ni~(2+)的条件进行优化。在35℃,pH=7.0,130 r/min振荡培养25 min的条件下,y188细胞对模拟废水中Ni~(2+)的去除率达到98.49%。以y188为菌种、废弃煤渣颗粒为载体组建固定化细胞生物反应器。该反应器在15—45℃,pH=2—8的条件下均保持良好的除Ni~(2+)活性,对Ni~(2+)质量浓度为10 mg/L的模拟废水可连续处理8批,Ni~(2+)的去除率保持在91%以上,对Ni~(2+)质量浓度为13.74 mg/L的实际废水连续处理6批,Ni~(2+)的去除率保持在93%以上。出水Ni~(2+)质量浓度均1.0 mg/L,达到国家电镀污染物排放标准。显微观察结合解吸实验表明,y188细胞在30 min内对废水中Ni~(2+)的去除主要是吸附除Ni~(2+)。  相似文献   

11.
离子交换剂在治理电镀含镍废水中的应用   总被引:1,自引:0,他引:1  
本文综述了近年来采用离子交换树脂处理含镍废水方面的新发展,介绍了三种新方法:1)用阴离子交换树脂处理含镍废水;2)用螯合树脂处理含镍废水;3)用L型重金属处理剂处理含镍废水。列举了五个具体应用实例。1)离子交换——反渗透法。可使含镍量提高到260~280g/L,可回用于镀槽。2)浮床交换——移床再生工艺。处理后含Ni~(2+)浓度小于0.43 mg/L,达到排放标准,处理1m~3废水可盈利0.29元;3)螯合树脂法处理电镀镍铁合金废水。再生液中硫酸镍含量可达200g/L,可以用于镀槽。4)三阴柱处理镍、铜、锌氰络合物废水。第一柱吸附铜,第二柱吸附锌,第三柱吸附镍;5)L型重金属处理剂治理含Ni~(2+)废水。经二年的实践表明,处理后排出水中Ni~(2+)<0.5mg╱L,洗脱液中Ni~(2+)浓度可达15g/L左右。  相似文献   

12.
采用Fenton法处理配位含镍废水,并研究了反应温度、废水初始pH值、H_2O_2的质量浓度、FeSO_4·7H_2O与H_2O_2的质量比、初始EDTA的质量对废水处理效果的影响。结果表明:在反应温度为45℃、反应时间为45 min、初始pH值为3、H_2O_2的质量浓度为10g/L、FeSO_4·7H_2O与H_2O_2的质量比为0.06的条件下,含镍废水中Ni~(2+)的去除率达到94.14%。  相似文献   

13.
利用活性污泥作为吸附剂,吸附废水溶液中重金属离子。研究了pH值、重金属离子初始浓度对活性污泥吸附效果的影响,以及吸附重金属离子前后废水pH值的变化情况,同时探讨了pH值、 Cu~(2+)和Cd~(2+)初始浓度对活性污泥中可溶性有机物产生量的影响。结果表明,活性污泥对重金属离子具有良好的吸附效果,活性污泥对Pb~(2+)、 Cd~(2+)、 Cu~(2+)、 Zn~(2+)、 Ni~(2+)的最佳吸附pH值在7~9之间。随着初始浓度的增大,活性污泥对Zn~(2+)、 Ni~(2+)的吸附率降低,对Cd~(2+)的吸附率升高,对Cu~(2+)的吸附率先升高后降低,对Pb~(2+)的吸附率无显著影响。活性污泥吸附重金属离子后溶液的pH值均向中性区域变化。溶解性有机物的产生量随着pH值的增大呈先降低后缓慢升高的趋势。在相同的pH值下溶解性有机物的产生量随着重金属离子浓度的增大而增大。  相似文献   

14.
采用Fenton氧化-Na_2S沉淀法处理综合电镀废水,并研究了Fe~(2+)与H_2O_2的浓度比、Na_2S的投加量、废水最终pH值、反应温度及反应时间对残余金属离子质量浓度的影响。结果表明:当H_2O_2与Fe~(2+)的浓度比为1.0∶1.4、Na_2S的投加量为0.35 g/L、废水最终pH值为7.0时,在20℃下反应15 min后静置,上清液中残余Cd~(2+)、Zn~(2+)、Ni~(2+)、Cu~(2+)的质量浓度均大幅降低,Cd~(2+)、Zn~(2+)、Ni~(2+)、Cu~(2+)的去除率分别为92.8%、90.0%、91.3%、97.3%。可见,Fenton氧化-Na_2S沉淀法可有效去除综合电镀废水中的Cd~(2+)、Zn~(2+)、Ni~(2+)、Cu~(2+)等金属离子。  相似文献   

15.
以葡萄糖为碳源、硝酸铁为铁源,采用水热法、碳热还原法制备了系列介孔纳米铁/碳(Fe/g-C)复合材料,通过XRD、FTIR、N2吸附-脱附等分析方法对其结构进行表征;以镍系加氢催化剂废水处理为模型反应,探讨了Fe/g-C复合材料铁含量、废水pH值及处理温度对Ni~(2+)去除率的影响。结果表明,Fe/g-C复合材料具有石墨化特征和介孔晶相结构且晶粒尺寸在20~80nm范围内;同时,Fe/g-C复合材料比表面积较大,有利于铁物种分散;在处理温度为30℃、废水pH值为5的条件下,10Fe/g-C复合材料(铁含量10%)对废水中Ni~(2+)的去除率达86.8%,除镍反应遵循准二级动力学模型。  相似文献   

16.
刘飞 《云南化工》2018,(4):102-104
含镍废水不仅造成镍金属的浪费,并且带来环境污染。通过配制硫酸镍溶液模拟含镍废水,采用电解法确定最佳阳极材料为钌涂层钛板,并研究了电解时间、电流强度和Ni~(2+)浓度等因素对Ni~(2+)的回收率的影响。实验结果表明:在电解时间240min,电流强度15A,Ni~(2+)质量浓度20g/L,电解温度50℃,p H值6,搅拌速率300r/min的条件下,Ni~(2+)的回收率为85.42%,电流效率为52.16%。  相似文献   

17.
采用臭氧技术处理化学镀镍废水。研究了废水初始pH值、通气流量、臭氧发生器电流、反应时间、废水中初始镍的质量浓度等因素对臭氧化处理效果的影响,并探索了臭氧-离子交换树脂组合工艺的处理效果。结果表明:臭氧处理可有效地降低化学镀镍废水中镍的质量浓度;在臭氧投加量为2.17 g/L的条件下,镍的去除率可达99.5%;采用臭氧-离子交换树脂组合工艺处理化学镀镍废水,出水中残余镍的质量浓度低于0.1 mg/L,满足排放标准的要求。  相似文献   

18.
利用禽类羽毛纤维作为吸附剂,吸附溶液中的重金属离子Cu~(2+)、Zn~(2+)、Ni~(2+)、Pb~(2+)、Cr~(6+)。考察温度、pH值、吸附剂投加量、重金属离子初始浓度等对羽毛纤维吸附效果的影响并建立吸附等温线。结果表明,羽毛纤维能吸附重金属离子,随着温度、吸附剂投加量的增大,重金属离子初始浓度的降低,羽毛纤维对重金属离子的吸附率逐渐提高。随着pH值的升高,羽毛纤维对Cu~(2+)、Zn~(2+)、Ni~(2+)、Pb~(2+)的吸附率提高,对Cr~(6+)的吸附率降低。羽毛纤维对Cu~(2+)、Zn~(2+)、Ni~(2+)、Pb~(2+)吸附符合Freundlich吸附等温模型。羽毛纤维对重金属离子的吸附能力顺序为Pb~(2+)>Cu~(2+)>Zn~(2+)>Ni~(2+)>Cr~(6+)。  相似文献   

19.
以粉末状珍珠岩吸附剂为研究对象,通过静态吸附试验重点研究了粉末状珍珠岩吸附剂用量、溶液初始浓度、初始pH对Ni~(2+)的吸附影响,及珍珠岩粉末对Ni~(2+)吸附动力学和吸附等温式。实验结果表明,在本研究条件下,随着吸附剂用量的增加,对Ni~(2+)的去除率逐渐增大;随着Ni~(2+)溶液的初始浓度的增大,对Ni~(2+)的吸附量逐渐增大,去除率逐渐减少;在pH≤6时,对Ni~(2+)的吸附去除率随着pH的增加而逐渐增大,后趋于平缓。粉末状珍珠岩对Ni~(2+)吸附动力学过程符合伪二级动力学规律,等温吸附线更符合Freundlich等温吸附规律。  相似文献   

20.
针对电镀废水中不仅存在重金属离子还存在金属络合物,通过化学沉淀与离子交换树脂吸附法联用深度处理电镀废水中的Cu~(2+)、Zn~(2+)及其金属络合物。通过考察pH值、吸附时间、温度等影响因素对重金属离子及其络合物去除效果的影响,选取最佳条件。结果表明:利用NaOH调节pH为12,在室温条件下搅拌8 min然后静置40min,通过化学沉淀法去除Cu~(2+)和Ni~(2+),去除率达95%以上;热失重分析结果证明离子交换树脂能够有效地吸附重金属络合物。在离子交换树脂吸附重金属络合物的实验中,增加离子交换树脂质量和吸附时间,重金属络合物EDTA-Cu、EDTA-Ni去除率达99.5%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号