首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
插装式比例节流阀系统中叠加了位移反馈环节构成电闭环控制,介绍插装阀的结构及其工作原理,并应用仿真软件Simulation X建立插装比例节流阀仿真模型。通过仿真模型分析了主阀芯面积增益、主阀控制腔体积、先导阀弹簧压力等重要的结构参数对比例节流阀动态响应的影响,从而优化节流阀结构参数,使比例节流阀具有主阀开关响应速度快、超调量小、稳态误差小等良好的动态响应特性。  相似文献   

2.
以125MN挤压机为背景,针对用于125MN挤压机活动横梁速度控制的原有节流系统,存在阀的稳定性差,控制精度不高的缺点,提出一种以电液比例控制阀为先导阀并带位移传感器和压力传感器的新型大通径(80mm)水节流阀,对该阀阀芯位置控制原理、流量特性、控制策略以及先导阀-节流阀系统动态特性进行研究;并采用状态空间法建立了节流阀阀芯位移控制系统的数学模型,用Simulink对该模型进行仿真,得出该系统在输入为一阶跃信号下的节流阀阀芯的位移动态响应曲线和速度动态响应曲线,并分析该节流阀在实际应用过程中的动态响应特性;得出了节流阀阀心位置控制系统仿真模型的响应时间和超调量,以及在实际应用过程中的响应时间和超调量.  相似文献   

3.
研制了一种由低功耗比例电磁铁驱动的先导溢流阀,在考虑液动力、主阀和先导阀芯动态过程、阻尼口流动和流体可压缩性等非线性因素的基础上,建立了该阀的数学模型,并应用Simulink软件进行了仿真分析,探讨了低功耗比例电磁铁的结构和性能参数对该阀稳态控制特性的影响,仿真与试验结果基本一致,试验还表明该阀具有良好的稳态控制和负载特性,线圈稳态功耗仅为8.1W,温升低。  相似文献   

4.
电液比例提升阀由定差溢流阀和二位三通比例节流阀组成。定差溢流阀使节流阀两端压差稳定,从而稳定提升阀的输出流量。在对比例提升阀建立静态仿真模型时,由于定差溢流阀与节流阀的阀芯节流口形状和流动状态较复杂,使用传统的液动力公式难以准确计算阀芯所受的稳态液动力,从而影响阀的静态性能计算精度。为了准确地通过计算获得比例提升阀的静态特性,采用Fluent软件进行流场仿真计算节流阀与定差溢流阀在不同阀口开度和压差下的稳态液动力数值,并对其进行插值处理得到阀口稳态液动力与阀口开度、压差之间的插值模型,再代入仿真模型中解得比例提升阀的静态性能。试验结果表明,稳态液动力采用流场仿真插值法所获得的静态性能仿真结果与试验结果具有很高的吻合度。  相似文献   

5.
针对振动环境下的液压系统对可靠的高压大流量比例伺服换向阀的需求,及实际高端液压系统中的新要求,提出了一种紧凑型大流量2D电液比例伺服换向阀。分析了该阀的螺旋伺服机构工作原理,建立了数学模型,推导了导控级流量方程,并基于振动环境下推导了主阀芯的力学平衡方程,利用Matlab进行了动态响应仿真分析,进行了静动态特性相关实验。研究结果表明:仿真分析、数学解析与实验三者所得到的结果基本吻合;并且在振动环境下叠加颤振后,滞环为2. 9%,且静态特性良好,对应-3 d B、-90°的频宽约为85 Hz,动态特性基本符合设计要求,振动可靠性良好。  相似文献   

6.
比例流量阀可根据设定信号连续比例控制执行器的速度或者转速,是重要的电液控制元件,广泛应用于各类电液系统。传统电液比例流量阀为消除负载压力变化对流量的影响,需要采用压差补偿器或流量传感器,增加了阀结构的复杂性和体积,并引起附加的节流损失。针对这些问题,根据Valvistor阀的流量放大特性,提出基于先导流量压差变化-位移校正、主阀流量放大的新型电液比例流量控制原理,该方法根据压力传感器检测的先导阀口压差实时校正先导阀芯位移,并通过主阀线性放大先导阀流量。研究中,建立新型比例流量阀的数学模型,推导得出基于补偿原理的控制策略;进一步建立阀的仿真模型,对比分析补偿前后比例流量阀的静动态特性;设计制造试验样机,通过试验验证了所提原理的可行性。测试结果表明,采用该原理可消除主阀口压差变化对输出流量的影响,动态响应快,特别适用于大流量的电液流量控制。  相似文献   

7.
以YS51200CNC插齿机主运动液压系统为研究对象,根据经典控制理论建立其控制阀数学模型,基于AMESim及Simulink软件建立液压系统联合仿真模型,并进行联合仿真分析。根据仿真结果,分析控制阀与液压缸间管道长度对液压系统响应特性的影响。利用PID调节器对伺服比例阀阀芯位置信号进行调节,有效地降低了系统的稳态误差,提高了系统的响应速度。  相似文献   

8.
提出一种可用于气动微流控芯片气压控制的PDMS电磁微阀。阐述了PDMS电磁微阀的工作原理与结构,给出了电磁驱动器数学模型。建立了自感系数、线圈电流、阀芯运动电压、机械运动和电磁吸力的仿真模型;建立了PDMS电磁微阀电磁力、阀膜弹性变形力与微流道内气、液作用力之间的多物理场耦合数学模型。利用MATLAB/Simulink软件建立PDMS电磁微阀阀膜形变模型、出口流量模型,并与5个电磁驱动器子模块连接。对电磁驱动器动态响应特性和PDMS电磁微阀流量动态特性进行仿真分析,给出了PDMS电磁微阀阀芯驱动力、阀芯响应特性和动态流量特性分析结果。  相似文献   

9.
基于Stribeck模型的摩擦颤振补偿   总被引:7,自引:2,他引:5  
针对摩擦力给气动比例系统带来的稳态误差和低速爬行问题,从实用角度来探索解决非线性摩擦力补偿的方法。基于粘弹性理论及Stribeck模型建立气动比例系统的摩擦数学模型。将该摩擦模型引入阀控缸系统的动态模型中,建立完整的系统运动模型。将高频低幅颤振信号叠加于系统中,对系统的摩擦机理变化以及稳定性的影响进行分析。理论分析表明,叠加合适的颤振信号后,系统的部分静摩擦力转化为动摩擦力,最大静摩擦力减小,响应速度提高,从而将系统的粘滑运动转换为一种平稳运动。试验发现,当颤振信号频率为系统固有频率的3.3倍,系统的定位精度由原来的0.516mm提高到0.284mm,滞后时间由原来的0.17s缩短为0.02s。证明对气动比例系统提出的摩擦颤振补偿理论是正确的。  相似文献   

10.
提出了一种滚珠丝杠型压扭联轴器,该联轴器能将输出力放大约20倍,有效地解决了因比例电磁铁磁饱和造成直动比例方向阀无法实现大流量的问题。该联轴器将2D方向阀和比例电磁铁相连接,利用压扭放大驱动技术,将电磁力转化为阀芯左右两端不平衡的液压力,以克服摩擦力、卡紧力和液动力等非线性因素的影响。对主阀P-A处与导控级的压力分布和流场分布进行了仿真分析,理论与实验研究表明:压扭联轴器有效地放大了电磁力,在流量约为210L/min的情况下,阀的阶跃响应约为0.35s,该阀-90°频率为4Hz左右。叠加一定颤振对改善阀的阶跃响应不明显,但能较好保证阀芯位移与电磁铁位移之间的跟随性。  相似文献   

11.
通过引入修正的库仑摩擦力模型开展了保险阀非线性稳定特性的数值分析,获得了阀门颤振的局部稳定特性,从理论上解释了保险阀通气试验阀门工作稳定而在振动试验中会发生颤振的现象,在此基础上开展了保险阀非线性稳定的参数影响特性研究,得到了以下结论:增加气瓶与保险阀连通管长度、库仑摩擦力、主弹簧刚度将有利于提升保险阀的稳定性;减小给气瓶充气theoretical用的孔板直径,将有助于提升保险阀的稳定性。  相似文献   

12.
根据高速电磁开关阀机电液结构,采用AMESim建立了高速电磁开关阀仿真模型,基于该模型对高速电磁开关阀在PWM信号下进行动态特性仿真,通过PWM信号、电流、阀芯位移间的动态响应关系,分析了脉冲调制(PWM)控制信号对高速电磁开关阀动态特性的影响,对从信号控制方面改善高速电磁开关阀性能提供理论基础。  相似文献   

13.
现有的比例调速阀通过数字流量补偿方案对流量进行控制,已具有良好的等流量特性。但出现负载扰动时,存在阀芯响应速度慢,流量超调大的问题。结合广义预测控制理论和压差前馈控制理论,设计了一种新型数字补偿器,实现对比例调速阀输出流量的精确控制。首先针对负载扰动引起调速阀性能下降的问题设计了压差前馈控制器,通过对扰动量的补偿减小阀芯冲击;然后依据广义预测控制原理设计流量跟踪控制器,实现阀芯快速的动态响应。利用AMESim与MATLAB/Simulink搭建联合仿真模型,对该阀动静态特性进行分析。仿真结果表明:在负载阶跃时,该阀响应速度快,流量超调小,抗负载干扰能力强,具有较高的静动态特性。  相似文献   

14.
赵峰  孙世磊 《液压与气动》2022,(11):181-188
优先阀配套于商用飞机液压系统,用于优先保证系统中主飞控系统的供油。在液压系统的实际工作过程中,当主飞控系统供油压力突然降低、液压系统中蓄能器放油时,常常会产生颤振、啸叫(鸣叫)等现象。建立了优先阀的数学模型及AMESim仿真模型,仿真分析了相关结构参数对阀动态特性的影响,并进行了参数优化。仿真分析结果表明,在优先阀其他结构参数不变的情况下,主阀阻尼孔径、先导阀座阻尼孔径及导阀弹簧刚度分别选为0.9 mm, 1.5 mm, 6.0 N/mm时,阀的动态特性效果最佳,当阀工况发生变化时,可有效改善阀芯颤振现象。  相似文献   

15.
该文分析了液压支架用手动先导阀的工作原理和结构,并在AMESim平台上建立了手动先导阀模型并进行了仿真,重点分析了其动态特性和主控阀阀芯上的阻尼孔大小变化对阀芯运动的影响,得出主阀芯的位移、流量和速度响应曲线。结果表明,主控阀阀芯的阻尼孔变化对阀芯速度及开启时间影响很大,为合理设计主阀阀芯阻尼孔提供了一定理论依据。  相似文献   

16.
有源先导级控制的电液比例流量阀特性研究   总被引:2,自引:0,他引:2  
针对现有技术采用压差补偿器或插装式流量传感器控制流量,会降低阀的通流能力,增加系统的功率损失和发热;大流量场合只能通过阀开口面积间接控制流量,受负载变化影响控制精度低;低工作压力范围可控性差、动态响应慢;大通径采用三级结构,构造复杂等问题,提出用小功率伺服电动机驱动小排量液压泵/马达(有源)、结合液压晶体管(Valvistor),构造新的低能耗、高可控的电液比例流量阀。该方法可扩大阀的流量控制范围,提高阀在低压时的动态响应。建立阀的静态数学模型,分析获得影响阀负载流量特性最主要的因素是反馈节流槽预开口量大小;进一步建立阀的动态数学模型,获得主阀芯稳定条件。根据阀的结构组成,建立阀的仿真模型,仿真分析主阀各参数对主阀性能的影响。结果表明,反馈节流槽预开口量越小,主阀负载流量特性越好;主阀口压降越大,主阀芯响应越快;但由动态数学模型可知主阀口压降太大且先导流量较小时,阀的稳定性也会降低。研究也表明,在保证主阀良好的动态特性前提下,可通过使先导泵/马达转速随负载压力变化,实现对阀的流量补偿,从而改善阀的负载流量特性。  相似文献   

17.
脉宽调制(PWM)技术以其高效、灵活和抗干扰能力强的特点被广泛应用在电液比例控制系统中。由于磁铁材料的磁滞和运动产生的摩擦力导致电液比例阀稳态特性存在明显的滞环现象,严重影响了电液比例阀的动态响应性能,改善滞环比较有效的方法是在驱动信号中叠加一定频率和振幅的颤振信号。针对反接卸荷式驱动电路的特点,详细分析了±24V脉宽调制信号在电液比例控制中存在的寄生颤振,另外,根据实验得出,在高频状态下通过改变PWM波的频率可以实现频率和幅度均独立可调的颤振信号,同时该颤振叠加方式使得电磁铁平均电流和颤振电流分别受PWM占空比和PWM频率独立调节。  相似文献   

18.
为控制高速液压缸设计了大流量高速开关阀,开关阀采用二级结构,先导阀为2D高频伺服阀,主阀为大通径滑阀。主阀采用并联双节流边的结构,减小主阀芯行程,减小所需导控流量,减小阀芯尺寸及质量,提高主阀动态响应特性。主阀采用负开口设计,设置死区,确保主阀完全导通过程的快速性。对主阀芯进行了动力学分析,并在MATLAB上建立了阀芯开启时的运动模型,进行了仿真研究。  相似文献   

19.
刘宁  游有鹏 《机电工程》2020,37(6):692-696
为提高数字式比例放大器对比例阀芯控制的精度和快速性,分析了常用反接卸荷式驱动电路的断流现象,提出了一种工作模式灵活的双边驱动电路及其控制逻辑。同时研究了数字式比例放大器颤振信号的叠加与作用效果,给出了一种将颤振信息融合于控制信号PWM占空比的颤振叠加实现方法;通过建模仿真和实验,比较了几种常用颤振信号对阀芯运动灵敏度和滞环的作用效果。研究结果表明:双边驱动电路及其控制逻辑可避免断流,提高比例阀芯定位精度,并且可实现比例方向阀快速换向;方波颤振在提升阀芯运动灵敏度和减小滞环方面优于三角波和正弦波颤振,叠加20%的方波颤振比无颤振叠加的阀芯滞环减小近40%,可显著改善比例阀的定位精度。  相似文献   

20.
基于AMESim的高速开关阀动态特性仿真研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以某型号电子限滑差速器中的无复位弹簧式高速开关阀为研究对象,分析了该高速开关阀的结构及工作原理,并建立了机、电、磁、液等各个耦合部分的数学模型。运用AMESim建模仿真平台建立高速开关阀的阀芯位移动态响应模型,基于该模型对高速开关阀在一定PWM信号下进行动态时间响应特性仿真,分析了阀芯质量、驱动电压、黏性阻尼系数等参数对高速开关阀阀芯位移响应时间各个阶段的影响,通过仿真结果分析了响应时间滞后的原因,并从提高阀芯响应时间方面提出参数优化调整建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号