首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
新型耐候钢连续冷却转变曲线的测定   总被引:5,自引:1,他引:5  
用膨胀法结合金相法,在gleeble1500热模拟机上测定了新型耐候钢0.14C-1.43Mn-0.69Si-0.79Al的连续冷却转变曲线(CCT曲线).结果表明,CCT曲线上珠光体和贝氏体的转变区分开,且在珠光体和贝氏体转变区域之间不存在奥氏体亚稳区.冷却速度小于1℃/s,转变产物为铁素体和珠光体;冷却速度为1℃/s,开始出现少量粒状贝氏体;随冷却速度的增大,铁素体和珠光体含量逐渐降低,贝氏体含量逐渐增多;冷速在5~30℃/s范围内,转变产物主要为铁素体和贝氏体;冷速大于30℃/s,马氏体开始出现;冷速达到80℃/s时,贝氏体消失,转变产物为马氏体;水淬的组织全部为马氏体.奥氏体区变形使铁素体转变区向左上方移动,贝氏体转变区向左下方移动.  相似文献   

2.
采用膨胀仪、光学显微镜和维氏硬度计研究新型槽帮钢的连续冷却转变行为,获得连续冷却转变(CCT)曲线。结果表明,CCT曲线存在高温铁素体-珠光体转变区、中温贝氏体转变区和低温马氏体转变区。随着冷却速度的增大,室温硬度不断提高,微观组织由铁素体-珠光体向贝氏体和马氏体过渡,最终形成单一马氏体组织。在实测冷却曲线中,当冷却速度小于0.14℃/s时,组织主要为高温铁素体-珠光体转变区;当冷却速度为0.14~0.81℃/s时主要为高温、中温复合转变区,室温组织主要为铁素体、珠光体和贝氏体;当冷却速度为0.81~1.62℃/s时为高温、中温和低温复合转变区,室温组织为铁素体、珠光体、贝氏体和马氏体;当冷却速度为4.05℃/s时为中温、低温两相转变区,高温转变区消失,室温组织为贝氏体和马氏体;当冷却速度高于8.10℃/s时,为马氏体单相转变区。随着冷却速度由0.06℃/s提高到40.5℃/s,微观组织由铁素体-珠光体过渡为贝氏体-马氏体,直至单相马氏体组织,其室温显微硬度由195 HV5(冷速为0.06℃/s)增大到515 HV5(冷速为40.5℃/s)。  相似文献   

3.
利用DIL805L热膨胀仪测定了S500Q水电用钢在不同冷速下连续冷却转变的热膨胀曲线,结合组织观察和显微硬度测定,获得了该钢种的静态连续冷却转变曲线。结果表明,冷速在0.5℃/s以下,组织为铁素体、珠光体和粒状贝氏体,冷速在0.5~5℃/s之间,组织为粒状贝氏体和板条贝氏体,冷速在20℃/s以上,组织完全为马氏体。  相似文献   

4.
在Gleeble-3500热模拟试验机上进行49Mn VS3钢的变形-连续冷却膨胀测定,结合金相-硬度法得到试验用钢的动态连续冷却转变曲线(CCT曲线)。结果表明:49Mn VS3钢的Ac1、Ac3分别为741℃、803℃。当冷却速度为0.5~5℃/s时,得到组织为铁素体和珠光体;冷却速度为7℃/s时,主要为细长的针状铁素体+块状铁素体+珠光体+少量贝氏体;10~15℃/s时发生贝氏体转变;15℃/s出现马氏体转变;冷速为20~40℃/s时,则只发生马氏体转变,得到完全的马氏体组织。随着冷却速度的增加,硬度呈先缓慢增大后线性上升。  相似文献   

5.
为进一步优化非调质NM400复相耐磨钢不同组织配比,利用Gleeble-3800热模拟试验机探究了试验钢在连续冷却条件下的组织转变规律,并结合金相法和硬度法,绘制出试验钢的动态连续冷却转变(CCT)曲线。结果表明,当冷速低于1 ℃/s时,试验钢组织为铁素体+粒状贝氏体+珠光体,部分粗大的原奥氏体晶粒转变为粒状贝氏体和珠光体。在冷却速率为5~40 ℃/s时,试验钢不再发生珠光体转变,显微组织均为铁素体+贝氏体+马氏体。并随着冷速的增加,马氏体含量不断增加,硬度升高;此外,不同分段冷却方案下,较低的中冷温度以及较长的空冷时间均有利于铁素体和贝氏体的转变。同时,残留奥氏体含量则随铁素体含量的增大而增大;由于试验钢的Ms点较高,马氏体板条较宽,并且有自回火现象发生。  相似文献   

6.
通过Gleeble-3800热模拟机研究了一种连杆用中碳非调质钢的连续冷却转变组织变化规律,分析了冷却速度对转变组织和显微硬度的影响。结果表明,当冷却速度小于0.1℃/s时,组织为铁素体-珠光体;当冷却速度大于0.5℃/s时,开始发生贝氏体转变,在0.5~0.8℃/s冷速范围内,组织为铁素体-珠光体+贝氏体;当冷却速度大于1℃/s时开始发生马氏体转变,随着冷却速度的增加,贝氏体、马氏体含量逐渐增加,当冷却速度大于8℃/s时,组织全部为马氏体。实验钢的显微硬度随着冷却速度的提高而增加。  相似文献   

7.
在Gleeble-3800热模拟机上测定了含微量Mo元素CL60钢在不同冷却速度下连续冷却时的膨胀曲线,并采用金相-硬度法,测定了该钢的连续冷却转变曲线(CCT曲线),研究了冷却速度对其显微组织演变以及硬度的影响。结果表明:当冷却速度小于1℃/s时,实验钢的转变产物为先共析铁素体和珠光体组织;当冷却速度增加到2℃/s时,开始发生贝氏体转变;当冷却速度增加到5℃/s时,开始发生马氏体转变;冷却速度在5~10℃/s的范围内时,转变产物为少量铁素体、珠光体、贝氏体和马氏体所组成的混合组织;当冷却速度为15℃/s时,先共析铁素体消失;当冷却速度为20~40℃/s时,转变产物为珠光体和马氏体混合组织;当冷却速度大于50℃/s时,转变产物全部为马氏体组织。随着冷却速度的增大,实验钢的硬度逐渐增大。尽管Mo元素的加入能细化珠光体片间距,但加Mo元素CL60钢在生产过程中得到理想组织的条件更加苛刻。为避免贝氏体、马氏体等非理想组织出现,不同部位的冷却速度须严格控制在2℃/s以下。  相似文献   

8.
利用膨胀法结合金相-硬度法,在Gleeble-3800热模拟机上测定了27CrMo27S钢的临界点Ac1、Ac3以及Ms;测定了该钢在不同冷却速度下连续冷却时的膨胀曲线,获得了连续冷却转变曲线(CCT曲线);研究了冷却速度对该钢组织及硬度的影响。结果表明在相当低的冷却速度范围内可获得贝氏体组织。当冷却速度小于1℃/s,转变产物为铁素体、珠光体和贝氏体(F+P+B),当冷却速度为1~6℃/s时转变产物是铁素体和贝氏体(F+B),当冷却速度为8~24℃/s时转变产物是贝氏体和马氏体(B+M),当冷却速度大于24℃/s时,转变产物为完全马氏体(M)。该钢种动态CCT曲线的测定可为生产实践和新工艺的制定提供一定的参考依据。  相似文献   

9.
采用膨胀测量法并结合金相-硬度法测定了42CrMo钢的动态连续冷却转变曲线(CCT曲线)及组织演变。结果表明,在较低冷却速度下显微组织由铁素体、珠光体和贝氏体组成,冷却速度范围为0.2~1℃/s时,随着冷速的增加,铁素体和珠光体组织逐渐减少直至消失,当冷速增加到1℃/s时,转变组织主要由贝氏体构成。冷却速度≥3℃/s时,显微组织中开始生成马氏体,并在冷却速度≥10℃/s完全转变为马氏体组织。研究还认为马氏体组织的生成是由于大的冷速和大的变形量共同作用的结果。  相似文献   

10.
利用热模拟试验机对XG835NH钢的奥氏体连续冷却动态转变曲线进行了测定和分析。结果表明:冷却速度在0.5℃/s以下,组织为铁素体+珠光体;当冷却速度超过0.5℃/s,小于1℃/s时,组织为铁素体+珠光体+贝氏体混合组织;当冷却速度超过1℃/s时,出现少量马氏体组织;当冷速超过5℃/s时,组织主要为马氏体。实际生产时,通过控制冷却速度,可获得适合拉拔和冷镦的XG835NH钢盘条。  相似文献   

11.
使用DIL805L型膨胀仪分析了曲轴钢的相变规律,得到了其奥氏体连续冷却转变曲线(CCT)。结果表明,试验钢的临界点为:Ac1=682 ℃,Ac3=765 ℃;当冷速为0.2~5 ℃/s时,转变产物为铁素体+珠光体;当冷速大于5 ℃/s时,转变产物为铁素体、珠光体、贝氏体与马氏体的混合组织;当冷速增大到15 ℃/s时,转变产物为贝氏体和马氏体组织;冷速越大冷却后马氏体含量越多,硬度逐渐增加。  相似文献   

12.
采用Gleeble-1500热模拟机测定了SCM435冷镦钢在不同冷速下连续冷却转变的膨胀曲线,结合光学显微镜的微观组织观察,测绘了该钢热变形奥氏体连续冷却转变过程中的动态CCT曲线;研究了其连续冷却转变产物的组织形态.实验结果表明,SCM435在0.5~30℃/s冷却速率下的组织主要由铁索体+珠光体、铁索体+珠光体+贝氏体、贝氏体+马氏体、马氏体组成.  相似文献   

13.
采用 Gleeble-3800热模拟试验机对EH460船板钢进行1050 ℃下变形30%和850 ℃下变形30%的双道次压缩试验。绘制了在不同冷速下连续冷却过程中钢的膨胀曲线,并在光学显微镜下观察了不同冷速下试样的室温组织。结合膨胀法与金相法,利用 Origin 8.0软件绘制了船板钢的动态 CCT 曲线。结果表明,当冷速为0.1~3 ℃/s 时,所得室温组织主要是铁素体和珠光体;当冷速大于5 ℃/s 时,出现粒状贝氏体组织,随着冷速的增加贝氏体逐渐增多,铁素体与珠光体逐渐减少;当冷速为10~15 ℃/s 时,珠光体消失,组织为铁素体与粒状贝氏体;随着冷速进一步增到 20~50 ℃/s 时不再发生铁素体相变,仅为粒状贝氏体组织。  相似文献   

14.
在Gleeble—1500热模拟试验机上研究了20SiMn3NiA钢在不同连续冷却条件下相和组织变化,用热膨胀法测定了该钢的连续冷却转变曲线(动态CCT曲线)。研究结果表明,20SiMn3NiA钢中的Mn、Ni、Si等合金元素能有效地阻止铁素体和珠光体的形成,故20SiMn3NiA钢的过冷奥氏体连续冷却转变曲线只有马氏体和贝氏体相变区。当临界冷却速度大于1℃/s时,20SiMn3NiA钢就可以获得板条状马氏体组织,且随着冷却速度的增大,马氏体组织变得越来越细。与静态CCT曲线相比,形变使动态CCT曲线的Ms点升高,奥氏体稳定性降低,形变细化了马氏体和贝氏体组织,使20SiMn3NiA钢在1℃/s的冷却速率下产生较高的强度。  相似文献   

15.
通过Gleeble-1500热模拟试验机,结合微观组织观察和硬度测试,绘制了Q690D厚规格钢板以不同速度连续冷却至室温的CCT曲线。结果表明,当冷速较低时,组织中存在先共析铁素体和珠光体区域,但其范围较小;冷却速度为3 ℃/s时,组织中出现板条贝氏体。试验钢在较宽的冷速范围内能够获得粒状贝氏体、粒状贝氏体+板条贝氏体组织。冷速达到15 ℃/s时,组织中即出现马氏体,试验钢淬透性较好,硬度值变化不明显。从试验钢板的调质组织观察发现,厚度截面不同位置的硬度值差异很小,组织特征相同,说明热模拟试验的结果同实际生产的厚规格钢板的组织及硬度具有高度的一致性。  相似文献   

16.
在Gleeble-3500热模拟机及热膨胀试验仪上测定了45MnSiVSQ钢动态及静态膨胀曲线,并采用切线法结合组织及硬度,测定了试验钢的静态和动态连续冷却转变(CCT)曲线,研究分析了形变温度和冷却速度对非调质钢45MnSiVSQ相变及珠光体片层间距的影响。结果表明:在0.1~3 ℃/s冷却速度范围内,珠光体片层间距随着冷却速度的增大而减小;对比950 ℃的动、静态CCT曲线可知,形变使试验钢相变起始温度有所升高,即相变孕育期缩短,其中对铁素体和珠光体相变区间影响尤为明显,而对贝氏体和马氏体相变区间孕育期的影响较小,表现为动态CCT曲线相比静态CCT曲线向左上方移动;对比不同形变温度下的动态CCT曲线可知,形变温度950 ℃时,贝氏体相变冷速区间为0.5~20 ℃/s,850 ℃形变时的贝氏体相变冷速区间为0.8~10 ℃/s。低温形变更利于铁素体和珠光体相变发生,减少了贝氏体、马氏体等非理想组织出现的机率。  相似文献   

17.
运用膨胀法同时结合显微组织观察及硬度测试确定了一种矿山机械用贝氏体耐磨铸钢的连续冷却转变曲线。结果表明:该矿山机械用贝氏体耐磨铸钢的Ac1、Ac3、Ms分别约为790、845和303 ℃;当冷却速度低于0.05 ℃/s时,组织为铁素体和珠光体;当冷却速度介于0.05 ~0.1 ℃/s之间时,组织为铁素体+珠光体+贝氏体;当冷却速度在0.25~15 ℃/s之间,为贝氏体+马氏体复相组织;当冷却速度大于30 ℃/s时,奥氏体几乎全转变为马氏体组织;马氏体临界转变速度在15~30 ℃/s之间。随着冷却速度的增加,显微硬度先快速增加后趋于585 HV0.01。  相似文献   

18.
通过热模拟试验、光学和扫描电镜(SEM)观察以及维氏硬度测试,研究了0.6Ni中碳合金钢的动态和静态奥氏体连续冷却转变规律,分析了变形以及合金元素Ni对中碳合金钢奥氏体转变行为的影响。结果表明:奥氏体变形有效抑制了0.6Ni中碳合金钢连续冷却后铁素体和珠光体的形成,大幅促进了贝氏体和马氏体相变,将全马氏体临界冷速由5 ℃/s降低到3 ℃/s。试验钢在动态连续冷却条件下,冷速为3 ℃/s时,全马氏体组织显微硬度为810 HV0.1;而静态连续冷却条件下,冷速为5 ℃/s时,全马氏体组织显微硬度为689 HV0.1。奥氏体变形的再结晶细化作用可以明显细化冷却后的马氏体组织,进而提高马氏体的硬度。在奥氏体静态连续冷却条件下,中碳合金钢中0.6Ni元素的加入,抑制了铁素体和珠光体相变,大幅促进贝氏体和马氏体相变,提高了奥氏体的稳定性,将Ms点从329 ℃降低到304 ℃,马氏体临界冷速从0.5 ℃/s降低到0.3 ℃/s;相对于约0.4Mn元素的加入,0.6Ni元素的加入可以大幅抑制铁素体和珠光体相变,可以将Ms点从320 ℃降低到304 ℃,同时可以有效细化奥氏体冷却后的显微组织。  相似文献   

19.
在DIL805L型淬火膨胀仪上测定了一种700 MPa级汽车大梁钢(700L)的连续冷却转变曲线(CCT曲线),结合金相-硬度法分析其相变规律、相变组织及影响因素.结果表明:试验钢的临界点Ac3=898℃,Ac1=772℃;当冷速小于0.5℃/s时,过冷奥氏体的转变产物为铁素体、珠光体和少量贝氏体;当冷速大于0.5℃/...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号