首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ceramic samples of solid solutions (1 ? x) PbNb2/3Mg1/3O3 · xPbTiO3 (0 ≤ x ≤ 1.0, Δx = 0.0025–0.05) are prepared by the columbite method. A detailed x?T phase diagram of the system is constructed (isothermal join at 25°C), and dielectric, piezoelectric, and elastic properties are investigated. It is established that the region of the morphotropic phase transition is positioned in the range 0.28 < x ≤ 0.43 and consists of a series of narrower regions. Inside one phase (cubic, rhombohedral, tetragonal), regions are found in which a qualitative and quantitative difference in structural and electrical parameters is observed. An interpretation of the observed effects in the context of the defect structure of the objects is suggested.  相似文献   

2.
Ceramic samples of lead magnesium niobate (PMN) and (1 ? x)Pb(Mg1/3Nb2/3)O3?xPbTiO3 (PMN-PT) solid solutions with x = 0, 0.05, 0.10, and 0.30 have been prepared by solid-state reactions, and their structural, electrical, and piezoelectric properties have been studied using x-ray diffraction, Rietveld profile analysis, impedance spectroscopy, and the resonance/antiresonance method. The results indicate that the use of nonstoichiometric columbite niobates enables the synthesis of phase-pure PMN and PMN-PT.  相似文献   

3.
Perovskite type (Ba0.85Ca0.15?2x Bi2x )(Zr0.1Ti0.9?x Cu x )O3 lead-free ceramics were prepared via a conventional solid-state reaction method. The phase structure, dielectric, ferroelectric properties and complex impedance were investigated in detail. XRD and dielectric measurements determined that single orthorhombic phase displayed in (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 at room temperature. With the introduction of Bi2O3/CuO, the phase structure exhibited the mixture of orthorhombic and tetragonal phases, and then turned to single tetragonal phase. In contrast to the sharp dielectric transition of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics, a broad dielectric peak coupled with a slight decrease in Curie temperature was observed in (Ba0.85Ca0.15?2x Bi2x )(Zr0.1Ti0.9?x Cu x )O3 ceramics with increasing x. The observed diffuse phase transition behavior was further confirmed by a couple of measurements with polarization loops and polarization current density curves. The structural and the composition fluctuations induced by ions doping should be responsible for the diffuse phase transition behavior. Furthermore, physical mechanisms of the conduction and relaxation processes were revealed by using impedance spectroscopy analyses. It was concluded that the conduction and relaxation processes were thermally activated, which was closely linked with the singly and doubly ionized oxygen vacancies.  相似文献   

4.
(Pb1 ? x Ln x )(Zr0.53Ti0.47)O3 and (Pb1 ? x Ln x )(Zr0.65Ti0.35)O3 (x = 0.02, 0.06; Ln = La, Pr, Gd, Yb) solid solutions have been prepared by modified solid-state synthesis using organic-ligand precursors. The solid solutions have been characterized by thermal analysis, IR spectroscopy, x-ray powder diffraction, and atomic force microscopy. All of them have a rhombohedrally distorted perovskite structure (sp. gr. R3c).  相似文献   

5.
We report the first fluorine doping of lead magnesium niobate in the PbMg (1 + x)/3Nb(2 ? x)/3O3 ? x F x system in a wide composition range, x = 0.025 to 0.625. The fluorine content of the samples is shown to be substantially lower than the intended one because of the fluorine volatilization in the form of HF during synthesis and sintering in air. The ceramics consist of magnesium and lead oxides undetectable by x-ray diffraction, and a perovskite phase whose composition can be represented by the formula PbMg(1 + m)/3Nb(2 ? m)/3O3 ? m F m , where the fluorine content after sintering is m ≤ 0.12. The PbO and MgO contents of the ceramics depend on the starting mixture composition (x) and heat-treatment conditions (hydrogen fluoride and lead oxide volatilization). As a result of the low fluorine content, the diffraction patterns of the samples show no superlattice reflections, and their lattice parameter varies insignificantly with x. Data are presented on the temperaturedependent dielectric permittivity of ceramic samples sintered and annealed under different conditions.  相似文献   

6.
(Ba0.67Sr0.33)1?3x/2Y x Ti1?y/2Mn y O3 [BST(Mn + Y), x = 0.006, y = 0.005] ceramics were fabricated by using citrate–nitrate combustion derived powder. Microstructure and dielectric properties of the BST(Mn + Y) ceramic samples were investigated within the sintering temperature ranged from 1220 to 1300 °C. Sintering temperature has a great influence on the microstructure and electrical properties of the ceramic samples. The dielectric properties, ferroelectric properties, and tunability are enhanced by optimizing sintering temperature. The relatively high tunability of 40 % (1.5 kV/mm DC field, 10 kHz) was obtained, and relatively low dielectric loss, <0.0052 (at 10 kHz, 20 °C) was acquired for BST(Mn + Y) samples sintered at 1275 °C for 3 h. Both the low dielectric loss and enhanced tunable properties of BST(Mn + Y) are useful for tunable devices application.  相似文献   

7.
Li6Mg7Ti3O16 ceramics were prepared by the conventional solid-state method with 1–5 wt% LiF as the sintering aid. Effects of LiF additions on the phase compositions, sintering characteristics, micro-structures and microwave dielectric properties of Li6Mg7Ti3O16 ceramics were investigated. The LiF addition could effectively lower the sintering temperature of Li6Mg7Ti3O16 ceramics from 1550 to 900 °C. For different LiF-doped compositions, the optimum dielectric permittivity (ε r ) and quality factor (Q·f) values first increased and then decreased with the increase of LiF contents, whereas the temperature coefficient of resonant frequency (τ f ) fluctuated between ??14.39 and ??8.21 ppm/°C. Typically, Li6Mg7Ti3O16 ceramics with 4 wt% LiF sintered at 900 °C exhibited excellent microwave dielectric properties of ε r ?=?16.17, Q·f?=?80,921 GHz and τ f ?=???8.21 ppm/°C, which are promising materials for the low temperature co-fired ceramics applications.  相似文献   

8.
Platelike Li1 ? x Na x Cu2O2 single crystals up to 2 × 10 × 10 mm in dimensions have been grown by slowly cooling (1 ? x)Li2CO3·xNa2O2·4CuO melts in alundum crucibles in air. Li1 ? x Na x Cu2O2 solid solutions in the LiCu2O2-NaCu2O2 system have been shown to exist in the composition range 0.78 < x < 1. The temperature stability ranges of NaCu2O2 and LiCu2O2 are 780–930 and 890–1050°C, respectively. The Mössbauer spectra and electrical conductivity of the crystals have been measured.  相似文献   

9.
Ca0.5(1 + x)Zr2–xFe x (PO4)3 phosphates have been synthesized by a sol–gel process. The individual compounds and solid solutions obtained crystallize in the NaZr2(PO4)3 structure (trigonal symmetry, sp. gr. R\(\bar 3\)). Using high-temperature X-ray diffraction, we have determined their thermal expansion parameters in the temperature range from 25 to 800°C. With increasing x, the magnitudes of their linear thermal expansion coefficients and thermal expansion anisotropy decrease. Most of the synthesized phosphates can be rated as low-thermal-expansion compounds and can be regarded as materials capable of withstanding thermal “stress.”  相似文献   

10.
The formation mechanisms of Li x Na1 ?x Ta y Nb1 ? y O3 perovskite solid solutions in the Li2CO3-Na2CO3-Nb2O5-Ta2O5 system have been studied by x-ray diffraction, differential thermal analysis, thermogravimetry, IR spectroscopy, and mass spectrometry at temperatures from 300 to 1100°C. The results indicate that the synthesis of Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions involves a complex sequence of consecutive and parallel solid-state reactions. An optimized synthesis procedure for Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions is proposed.  相似文献   

11.
We have studied general trends of crystallization from high-temperature solutions in the K2O-P2O5-V2O5-Bi2O3 system at P/V = 0.5?2.0, K/(P + V) = 0.7?1.4, and Bi2O3 contents from 25 to 50 wt % and identified the stability regions of BiPO4, K3Bi5(PO4)6, K2Bi3O(PO4)3, and K3Bi2(PO4)3 ? x (VO4) x (x = 0?3) solid solutions. The synthesized compounds have been characterized by X-ray powder diffraction and IR spectroscopy, and the structure of two solid solutions has been determined by single-crystal X-ray diffraction (sp. gr. C 2/c): K3Bi2(PO4)2(VO4), a = 13.8857(8), b = 13.5432(5), c = 6.8679(4) Å, β = 114.031(7)°; K3Bi2(PO4)1.25(VO4)1.75, a = 13.907(4), b = 13.615(2), c = 6.956(2) Å, β = 113.52(4)°.  相似文献   

12.
A series of In3+-doped Ba0.85Ca0.15TiO3:0.75%Er3+/xIn3+ (BCT:Er/xIn) lead-free piezoelectric ceramics with excellent upconversion luminescence were synthesized by the solid state reaction method. The effects of In3+ content on the crystal structure, ferroelectric, dielectric, piezoelectric, and upconversion luminescence properties were systematically studied. Under 980 nm excitation, a giant enhancement of the green emission (550 nm) by 10 times is achieved upon 2.5% mol In3+ doping, which is rarely observed in rare-earth ions-doped perovskite ferroelectric materials. The ultraviolet-visible-near infrared absorption measurements show that the In3+ doping may improve the dissolution of Er3+ ions and modify the isolate-/clustered-Er3+ ratio for x?≤?2.5%, resulting in the enhancement of the absorption cross-section, thereby contributing to the enhancement of green luminescence. Unfortunately, the In3+ doping suppresses the ferroelectric and piezoelectric properties of the BCT:Er/xIn ceramics. This problem can be resolved by adding a small amount (1 mol%) of Yb3+ to the BCT:Er/xIn ceramics to restore their good ferroelectric and piezoelectric properties. Such In3+ and rare-earth ions co-doped ceramics with greatly enhanced upconversion luminescence and good ferroelectricity and piezoelectricity may have potential applications in electro-optical devices.  相似文献   

13.
Multiferroic properties of La-modified four-layered perovskite Bi5?x La x Fe0.5Co0.5Ti3O15 (0 ≤ x ≤ 1) ceramics were investigated, by analyzing the magnetodielectric effect, magneto-polarization response and magnetoelectric conversion. X-ray diffraction indicated the formation of pure Aurivillius ceramics, and Raman spectroscopy revealed the Bi ions displacement and the crystal structure variation. The enhancement of ferromagnetic and ferroelectric properties was observed in Bi5?x La x Fe0.5Co0.5Ti3O15 after La modification. The evidence for enhanced ME coupling was determined by magnetic field-induced marked variations in the dielectric constant and polarization. A maximum ME coefficient of 1.15 mV/cm·Oe was achieved in Bi4.25La0.75Fe0.5Co0.5Ti3O15 ceramic, which provides the possible promise for novel magnetoelectric device application.  相似文献   

14.
Li2Mg3SnO6 (abbreviation for LMS) ceramics doped with 1–4 wt% lithium fluoride (LiF) were prepared by the conventional solid-state reaction method. The effects of LiF addition on the phase compositions, sintering behaviors and microwave dielectric properties of LMS ceramics were investigated. A small amount of LiF addition could effectively decrease the sintering temperatures due to the liquid phase in the sintering process and induced no apparent degradation of the microwave dielectric properties. The optimized quality factor values for each composition firstly increased and then decreased with the increase of the LiF content. Whereas, the optimized dielectric permittivity increased with increasing of the LiF content. Distinguished microwave dielectric properties with a dielectric constant (ε r) of 11.13, a quality factor (Q·f) of 104,750 GHz, and a temperature coefficient of resonant frequency (τ f ) of ?10.83 ppm/°C were obtained for LMS ceramics sintered at 950?°C doped with 3 wt% LiF, which showed that the materials were suitable for the low temperature co-fired ceramics applications (LTCC).  相似文献   

15.
Crystal structure and dielectric properties of Zn3Mo2O9 ceramics prepared through a conventional solid-state reaction method were characterized. XRD and Raman analysis revealed that the Zn3Mo2O9 crystallized in a monoclinic crystal structure and reminded stable up to1020 °C. Dense ceramics with high relative density (~ 92.3%) were obtained when sintered at 1000 °C and possessed good microwave dielectric properties with a relative permittivity (ε r ) of 8.7, a quality factor (Q?×?f) of 23,400 GHz, and a negative temperature coefficient of resonance frequency (τ f ) of around ??79 ppm/°C. With 5 wt% B2O3 addition, the sintering temperature of Zn3Mo2O9 ceramic was successfully lowered to 900 °C and microwave dielectric properties with ε r ?=?11.8, Q?×?f?=?20,000 GHz, and τ f = ??79.5 ppm/°C were achieved.  相似文献   

16.
A study to develop a new system of negative temperature coefficient thermistors for wide temperature range, A series of Mn-based perovskite-structured ceramics of composition (LaMn1?x Al x O3)0.9(Al2O3)0.1 has been synthesized by conventional solid state reaction at 1350?°C. The X-ray diffraction patterns showed that for all the samples, the substitution of manganese by aluminum up to x?=?0.1 preserved the rhombohedral perovskite LaMnO3-like phase. For x?=?0.2, apart from the LaMnO3-like structure, a second perovskite phase based on the cubic LaAlO3 structure was formed. For x?=?0.3 and 0.4, the phase present was LaAlO3 -type structure. The grain sizes of the sintered body detected by scanning electron microscope were decreased with increasing Al2O3 content. The resistivity increases with increasing the Al content. The obtained values of ρ 25?°C and B 25/50 and E a are in the range of 10–13103 Ω cm, 1813–2794 K, 0.156–0.241 eV, respectively. The resistance variation (ΔR/R) was <0.241% and the minimum value (0.0483%) was obtained for aging at 125?°C at 500 h. The aim of this work was explored new composite ceramics materials, which could be used as potential candidates for wide temperature range from ?100 to 500?°C thermistors applications.  相似文献   

17.
Lead-free (K0.5Na0.5)(Nb1-xGe x )O3 (KNN-xGe, where x = 0-0.01) piezoelectric ceramics were prepared by conventional ceramic processing. The effects of Ge4+ cation doping on the phase compositions, microstructure and electrical properties of KNN ceramics were studied. SEM images show that Ge4+ cation doping improved the sintering and promoted the grain growth of the KNN ceramics. Dielectric and ferroelectric measurements proved that Ge4+ cations substituted Nb5+ ions as acceptors, and the Curie temperature (TC) shows an almost linear decrease with increasing the Ge4+ content. Combining this result with microstructure observations and electrical measurements, it is concluded that the optimal sintering temperature for KNN-xGe ceramics was 1020°C. Ge4+ doping less than 0.4 mol.%can improve the compositional homogeneity and piezoelectric properties of KNN ceramics. The KNN-xGe ceramics with x = 0.2% exhibited the best piezoelectric properties: piezoelectric constant d33 = 120 pC/N, planar electromechanical coupling coefficient kp = 34.7%, mechanical quality factor Qm = 130, and tanδ = 3.6%.  相似文献   

18.
Polycrystalline samples of BaTi1?xFexO3 (x = 0.00–0.30) are prepared by solid-state reaction method and their structural and magnetic properties are studied. Detailed investigation of XRD patterns reveal the coexistence of tetragonal (space group P4mm) and hexagonal phases (space group P6 3/mmc) for x ≥ 0.1. Magnetic measurements reveal room-temperature ferromagnetism in x = 0.15–0.3 samples, and their ferromagnetic transition temperature increases from 397 K for x = 0.15 to 464 K for x = 0.3. The initial magnetization curves for x = 0.15–0.3 are analyzed in terms of bound magnetic polaron (BMP) model. The analysis of susceptibility data in the paramagnetic region by Curie-Weiss law confirms the ferromagnetic transition for x ≥ 0.15 and the effective magnetic moment systematically increases with increase in Fe concentration.  相似文献   

19.
In this paper, we report an ultralow thermal conductivity and a high-temperature phase stability of the (Nd1?x Ce x )2Zr2O7+x system over the temperature range from room temperature to 1600 °C and over a wide composition range (0.2 ≤ x ≤ 0.8), and the (Nd1?x Ce x )2Zr2O7+x system is therefore considered a strong candidate material for the fabrication of next-generation high-temperature thermal barrier coatings. The observed thermal conductivities (0.65–1.0 W/mK) are about 60–40% lower than those of undoped Nd2Zr2O7 over the same temperature range (100–700 °C) and indicate a glass-like behavior. For comparison, the variation in the thermal conductivity with the temperature of the (Gd1?x Ce x )2Zr2O7+x system with similar point defects was also measured, and the observed behavior was almost the same as that of undoped Gd2Zr2O7 and was mostly determined by phonon–phonon scattering (λ ∝ 1/T). The effect of point defect scattering and strong phonon scattering sources (rattlers) on the thermal conductivity is also discussed in this paper. The results of this study suggest that the ultralow thermal conductivity of (Nd1?x Ce x )2Zr2O7+x can be attributed to the presence of rattlers because of the large difference between the ionic radii of the Nd3+ and Ce4+ ions.  相似文献   

20.
The multicomponent refractory oxide system Zn2(TiaSnb)1 ? x ZrxO4 (a + b = 1; a: b = 1: 5, 1: 4, 1: 3, 1: 2, 1: 1, 1: 0, 2: 1, 3: 1, 4: 1; x = 0?1.0; Δx = 0.05) has been studied by x-ray diffraction, using samples prepared by melting appropriate oxide mixtures in a low-temperature hydrogen-oxygen plasma. Two phases, both with wide homogeneity ranges, have been identified: α-phase, with a cubic inverse spinel structure, and β-phase, with a tetragonal spinel structure. The phase boundaries in the system have been determined. Structural data are presented for about 100 solid solutions of different compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号