首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The reversible reduction of [S2Mo18O62]4- to [S2Mo18O62]5- and [S2Mo18O62]6- at a glassy carbon macrodisk electrode has been studied by cyclic voltammetry in acetonitrile as a function of the concentration of [(C6H13)4N]4[S2Mo18O62] in the absence and presence of [(C6H13)4N]ClO4 as the added supporting electrolyte. Consideration is given to the influence of scan rate, reference-working electrode distance, [(C6H13)4N]4[S2Mo18O62], and electrolyte concentrations. Experimental data confirm theoretical predictions that cyclic voltammetry at a macrodisk electrode is a viable technique for studies of multiply charged electroactive species without added electrolyte, provided the influence of enhanced complexities associated with effects of increased solution resistance, the mass transport contribution from migration, and convection arising from enhanced density gradients are considered. Enhanced density gradients present in the absence of added supporting electrolyte give rise to a more marked dependence of voltammograms on the angle of the electrode and hence lead to significant distortion of wave shapes at low scan rates. The summation of all these obstacles implies that quantitative evaluation of cyclic voltammograms of multiply charged species requires significantly greater care in the absence than in the presence of added supporting electrolyte.  相似文献   

2.
Reference potential scales are not generally available in ionic liquids. Consequently, comparison of data with those obtained in conventional solvent (electrolyte) media is not possible. The process [Co(Cp)2](+/0) (Co(Cp)2 = cobaltocene) has been studied at gold, glassy carbon and platinum macrodisk electrodes to test the feasibility of using this redox couple as a voltammetric reference standard in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]). A reversible, one-electron reduction process was observed, and the measured reversible potential versus a silver quasi-reference electrode was independent of the working electrode material, the concentration, and the scan rate. Ferrocene, the other traditionally used reference compound, is poorly soluble in this ionic liquid. However, the solution-phase voltammetry of ethylferrocene could be readily studied in [bmim][PF6], and a reversible oxidation process was observed. A reversible potential of +1285 +/- 5 mV versus the [Co(Cp)2](+/0) reference potential scale was obtained, and this value is comparable with that obtained in CH3CN (0.1 M Bu4NPF6) when referenced to the same potential scale. Ferrocene, decamethylferrocence, 1,1'-dimethylferrocene, 1,1'-diacetylferrocene, and ferrocenecarboxaldehyde were adhered to the working electrode surface and immersed in [bmim][PF6]. In each case, solid-state voltammetry provided well-defined, reversible one-electron oxidation processes that had the appearance of being diffusion controlled, with charge neutralization occurring via the ionic liquid. Reversible potentials of the solid-state processes referenced against the [Co(Cp)2](+/0) scale were similar to solution-phase values obtained in CH3CN (0.1 M Bu4NPF6).  相似文献   

3.
Uniform and vertically aligned nanocone and nanopillar arrays were successfully constructed on heavily boron-doped nanocrysatlline diamond films by carrying out bias-assisted reactive ion etching in hydrogen/argon plasmas. The electrochemical properties of the nanostructured boron-doped diamond films were investigated by cyclic voltammetry using 1 mM [Fe(CN)6](3-/4-) as redox couple. Compared to the planar boron-doped nanocrystalline diamond film electrode, the surface nanostructuring of boron-doped diamond film electrodes demonstrate enhanced sensitivity due to their enlarged electro-active surface areas. The results indicated that boron-doped diamond nanocones and nanopillars are promising electrode materials which benefit to improve the efficiency, sensitivity and reproducibility of biomedical and chemical sensors.  相似文献   

4.
Hu Z  Heineman WR 《Analytical chemistry》2000,72(11):2395-2400
The analytical utility of chemically modified microelectrodes for oxidation-state speciation of redox couples by cyclic voltammetry has been explored. [Re(I)(DMPE)3]+/[Re(II)(DMPE)3]2+, where DMPE = 1,2-bis(dimethylphosphino)ethane, was studied at carbon-fiber microelectrodes of approximately 5 microm in radius coated with Nafion-entrapped solgel-derived silica (Nafion-silica) composite. The results are compared with cyclic voltammetry of [Fe(CN)6]3-/[Fe(CN)6]4- at bare carbon-fiber microelectrodes. At both microelectrodes, the cathodic and anodic limiting currents are linearly proportional to the concentrations of the reducible and oxidizable species of a redox couple, respectively. The shape of the cyclic voltammogram and the magnitude of the steady-state limiting current are not affected by the potential at which the scan starts. Speciation of both forms of a redox couple could be achieved voltammetrically at the microelectrodes. However, a considerably slower scan rate was required to achieve steady state at the modified electrode because of the smaller diffusion coefficients of [Re(I)(DMPE)3]+ and [Re(II)(DMPE)3]2+ in the Nafion-silica composite. The detection limit at the modified electrode was considerably lower (5 x 10(-9) M for [Re(I)(DMPE)3]+) than at the bare electrode (6 x 10(-5) M for [Fe(CN)6]3- and [Fe(CN)6]4-) because of the substantial preconcentration of [Re(I)(DMPE)3]+ by the Nafion-silica composite.  相似文献   

5.
A nonlabeling voltammetric detection method for DNA hybridization has been developed, in which [Fe(CN)(6)](3-) in solution can readily approach an electrode surface covered with a charge-compensated DNA duplex layer and thus provides a strong redox-sensing current. Charge compensation for negative charges on the DNA backbone has been specifically accomplished on DNA duplexes by discouraging nonspecific binding of positively charged intercalating molecules with single strands. A pretreatment of DNA-modified electrodes with sodium dodecyl sulfate before the intercalator binding process is essential in preventing the nonspecific binding. Since ferricyanide, the only electrochemically active species, is present in the voltammetric solution, the detection signal can be amplified by increasing its concentration. Combination of the duplex-specific charge compensation with the signal amplification has achieved a remarkable signal difference: in 30 mM [Fe(CN)(6)](3-), the area ratio between cyclic voltammograms of the hybridized and unhybridized electrodes is approximately 200 when 3,6-diaminoacridine is used as the intercalator. High sensitivity of the method has been demonstrated by detecting 10 fM (100 zmol in amount) of a target probe DNA.  相似文献   

6.
Zhang J  Guo SX  Bond AM  Marken F 《Analytical chemistry》2004,76(13):3619-3629
Significant advantages of Fourier transformed large-amplitude ac higher (second to eighth) harmonics relative to responses obtained with conventional small-amplitude ac or dc cyclic voltammetric methods have been demonstrated with respect to (i) the suppression of capacitive background currents, (ii) the separation of the reversible reduction of [Ru(NH(3))(6)](3+) from the overlapping irreversible oxygen reduction process under conditions where aerobic oxygen remains present in the electrochemical cell, and (iii) the kinetic resolution of the reversible [Ru(NH(3))(6)](3+/2+) process in mixtures of [Fe(CN)(6)](3-) and [Ru(NH(3))(6)](3+) at appropriately treated boron-doped diamond electrodes, even when highly unfavorable [Fe(CN)(6)](3-) to [Ru(NH(3))(6)](3+) concentration ratios are employed. Theoretical support for the basis of kinetic discrimination in large-amplitude higher harmonic ac cyclic voltammetry is provided.  相似文献   

7.
A new analytical spectroelectrochemical methodology is reported on that utilizes an optically transparent boron-doped diamond thin film. The film was deposited on undoped Si by microwave-assisted chemical vapor deposition using a 4-h growth with a 0.5% CH4/H2 source gas mixture and 2 ppm B2H6 added for boron doping. The thin-film electrode possessed a transparency of 40-60% in the mid- and far-IR regions of the electromagnetic spectrum. The physical, electrical, optical, and electrochemical properties of the electrode were characterized by scanning electron microscopy, Raman spectroscopy, X-ray diffraction, four-point probe electrical resistance measurements, IR spectroscopy, and cyclic voltammetry. The film's electrochemical behavior was evaluated using both aqueous (Fe(CN)(6)3-/4-, methyl viologen, Ru(NH3)(6)3+/2+, and IrCl(6)2-/3-) and nonaqueous (ferrocene) redox systems. The film exhibited a low and stable background current and a nearly reversible voltammetric response for all these redox systems. The diamond/Si optically transparent electrode (OTE) and a thin-layer transmission cell were used to record the spectroelectrochemical response for 10 mM Fe(CN)(6)3-/4- in 1 M KCl. Difference IR spectra (oxidized minus reduced), recorded at various applied potentials, showed that the CN vibrational mode at 2039 cm-1 for Fe(CN)(6)4- reversibly shifted to 2116 cm-1 upon oxidation to Fe(CN)(6)3-, as expected. Difference IR spectra (oxidized minus reduced) were also recorded for 20 mM ferrocene in 0.1 M TBABF4/CH3CN. A shift of the C-H bending mode of the cyclopentadienyl ring from 823 to 857 cm-1 occurred upon oxidation of ferrocene to ferricenium. The key finding from the work is that the diamond OTE provides sensitive, reproducible, and stable spectroelectrochemical responses for aqueous and nonaqueous redox systems in the mid- and far-IR.  相似文献   

8.
Lee CY  Tan YJ  Bond AM 《Analytical chemistry》2008,80(10):3873-3881
Voltammetric behavior at gold electrodes in aqueous media is known to be strongly dependent on electrode polishing and history. In this study, an electrode array consisting of 100 nominally identical and individually addressable gold disks electrodes, each with a radius of 127 microm, has been fabricated. The ability to analyze both individual electrode and total array performance enables microscopic aspects of the overall voltammetric response arising from variable levels of inhomogeneity in each electrode to be identified. The array configuration was initially employed with the reversible and hence relatively surface insensitive [Ru(NH 3) 6] (3+/2+) reaction and then with the more highly surface sensitive quasi-reversible [Fe(CN) 6] (3-/4-) process. In both these cases, the reactants and products are solution soluble and, at a scan rate of 50 mV s (-1), each electrode in the array is assumed to behave independently, since no evidence of overlapping of the diffusion layers was detected. As would be expected, the variability of the individual electrodes' responses was significantly larger than found for the summed electrode behavior. In the case of cytochrome c voltammetry at a 4,4'-dipyridyl disulfide modified electrode, a far greater dependence on electrode history and electrode heterogeneity was detected. In this case, voltammograms derived from individual electrodes in the gold array electrode exhibit shape variations ranging from peak to sigmoidal. However, again the total response was always found to be well-defined. This voltammetry is consistent with a microscopic model of heterogeneity where some parts of each chemically modified electrode surface are electroactive while other parts are less active. The findings are consistent with the common existence of electrode heterogeneity in cyclic voltammetric responses at gold electrodes, that are normally difficult to detect, but fundamentally important, as electrode nonuniformity can give rise to subtle forms of kinetic and other forms of dispersion.  相似文献   

9.
硼掺杂金刚石薄膜电极电化学特性的研究   总被引:2,自引:0,他引:2  
本文用未经任何表面处理的硼掺杂金刚石薄膜为电极材料,采用循环伏安法和计时电流法检测含K3Fe(CN)6的KCl和HCl-KCl溶液的响应电流,对电极的基本特性,如响应时间,稳定性等进行了研究;同坟也对溶液pH值变化与因而造成的响应电流变化进行了研究。从与玻碳电极比较的角度出发,分别在含汞的酸性KCl-HNO3和中性KCl体系中,在一定电位下预富集铅,而后用阳极扫描法检测Pb-Hg的溶出峰电流,对金  相似文献   

10.
El-Said WA  Kim TH  Kim H  Choi JW 《Nanotechnology》2010,21(45):455501
Cell-cell and cell-extracellular matrix (ECM) adhesion are fundamental and important in the development of a cell-based chip. In this study, a novel, simple, rapid, and one-step technique was developed for the fabrication of a uniform three-dimensional mesoporous gold thin film (MPGF) onto a gold (Au) coated glass plate based on an electrochemical deposition method. Scanning electron microscopy images demonstrated that the resulting MPGF electrode had uniformly distributed pores with diameters of about 20 nm. The cyclic voltammetric behavior of [Fe(CN)(6)](4-/3-) coupled onto MPGF and Au electrodes demonstrated that the MPGF electrode had a higher electrocatalytic sensitivity and reversibility than the bare Au electrode. The Arg-Gly-Asp (RGD) sequence containing the peptide was immobilized on the MPGF and bare Au substrates. HeLa cancer cells were then cultured on the RGD peptide layer. The successful immobilization of the peptide and cells was confirmed by atomic force microscopy. The cell proliferation and viability were evaluated by cyclic voltammetry and Trypan blue dyeing assay. These results indicated that the RGD/MPGF modified electrodes showed an electrochemical sensitivity in the detection of cancer cells which is approximately three times higher, especially at low cell density, than RGD/Au electrodes. This much improved sensitivity of the MPGF modified electrode demonstrates the potential for the fabrication of a highly sensitive and low-cost cell-based chip for rapid cancer detection.  相似文献   

11.
Zhang J  Bond AM 《Analytical chemistry》2003,75(24):6938-6948
Conventional cyclic voltammetric studies on the oxidation of millimolar concentrations (mg masses) of trans-[Mn(CN)(CO)(2)[P(OPh)(3)](Ph(2)PCH(2)PPh(2))] (trans-Mn) dissolved in milliliter volumes of bulk ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM.PF(6)), give rise to a reversible [trans-Mn](0/+) process. In this study, it is shown that equally well-defined reversible voltammetry can be more economically obtained under microchemical ionic liquid conditions by employing a chemically modified electrode (microg quantities of trans-Mn adhered to a glassy carbon electrode covered with microliter volumes of water-immiscible BMIM.PF(6)) in contact with aqueous (0.1 M KPF(6)) electrolyte. The ability to obtain electrochemical data that are directly relatable to bulk ionic liquid media under these microchemical conditions is principally associated with the dissolution of electrogenerated solid [trans-Mn](+) in the layer of water-immiscible BMIM.PF(6) present at the electrode/ionic liquid/aqueous electrolyte interface. If the BMIM.PF(6) layer is sufficiently thick, mass transport of the dissolved species is governed by semi-infinite linear diffusion. Under these conditions, the voltammetric waveshape and position, but not the current magnitude are the same as those found when conventional bulk ionic liquid conditions are employed. In contrast, use of very thin layers produces voltammograms that exhibit the characteristics expected for a reversible process in which the mass transport process is predominantly governed by finite rather than semi-infinite diffusion. A theoretical model has been developed that describes the transformation from thick- to thin-layer type behavior as the thickness of the ionic liquid layer is decreased.  相似文献   

12.
Large signal-to-background (S/B) ratios for the Fe(CN)(6)(3)(-)(/4)(-) and IrCl(6)(2)(-)(/3)(-) redox couples in KCl have been observed in cyclic voltammetric measurements made at a conductive diamond thin-film electrode without any conventional surface pretreatment. The S/B ratios were a factor of ~16 and 8 larger at diamond than at freshly polished glassy carbon (GC) for Fe(CN)(6)(3)(-)(/4)(-) and IrCl(6)(2)(-)(/3)(-), respectively. The polycrystalline diamond film, grown on a p-Si(100) substrate, possessed significant cubic {100} faceting, as evidenced by AFM images, and was of high quality, as indicated by Raman spectroscopy. The high degree of electrochemical activity without surface pretreatment, the enhanced S/B ratios, and the excellent response stability demonstrate that diamond might be an attractive new electrode material for electroanalysis.  相似文献   

13.
The electrochemical properties of two commercial (Condias, Sumitomo) boron-doped diamond thin-film electrodes were compared with those of two types of boron-doped diamond thin film deposited in our laboratory (microcrystalline, nanocrystalline). Scanning electron microscopy and Raman spectroscopy were used to characterize the electrode morphology and microstructure, respectively. Cyclic voltammetry was used to study the electrochemical response, with five different redox systems serving as probes (Fe(CN)(6)(3)(-)(/4)(-), Ru(NH(3))(6)(3+/)(2+), IrCl(6)(2)(-)(/3)(-), 4-methylcatechol, Fe(3+/2+)). The response for the different systems was quite reproducibile from electrode type to type and from film to film for electrodes of the same type. For all five redox systems, the forward reaction peak current varied linearly with the scan rate(1/2) (nu), indicative of electrode reaction kinetics controlled by mass transport (semi-infinite linear diffusion) of the reactant. Apparent heterogeneous electron-transfer rate constants, k degrees (app), for all five redox systems were determined from deltaE(p)-nu experimental data, according to the method described by Nicholson (Nicholson, R. S. Anal. Chem. 1965, 37, 1351.). The rate constants were also verified through digital simulation (DigiSim 3.03) of the voltammetric i-E curves at different scan rates. Good fits between the experimental and simulated voltammograms were found for scan rates up to 50 V/s. k degrees (app) values of 0.05-0.5 cm/s were observed for Fe(CN)(6)(3)(-)(/4)(-), Ru(NH(3))(6)(3+/2+), and IrCl(6)(2)(-)(/3)(-) without any extensive electrode pretreatment (e.g., polishing). Lower k degrees (app) values of 10(-)(4)-10(-)(6) cm/s were found for 4-methylcatechol and Fe(3+/2+). The voltammetric responses for Fe(CN)(6)(3)(-)(/4)(-) and Ru(NH(3))(6)(3+/2+) were also examined at all four electrode types at two different solution pH (1.90, 7.35). Since the hydrogen-terminated diamond surfaces contain few, if any, ionizable carbon-oxygen functionalities (e.g., carboxylic acid, pK(a) approximately 4.5), the deltaE(p), i(p)(ox), and i(p)(red) values for the two systems were, for the most part, unaffected by the solution pH. This is in contrast to the typical behavior of oxygenated, sp(2) carbon electrodes, such as glassy carbon.  相似文献   

14.
The ordered ultrathin films based on the fabrication of Mg/Fe-LDHs ([Mg6Fe2(OH)16CO3·(H2O)4.5]0.375) nanosheets and hexacyanoferrate(III) anions via the self-assembly procedure were prepared. The electrodes modified by the films demonstrated a couple of well-defined reversible redox peaks attributed to [Fe(CN)6]3?/4? and Fe2+/3+ couples. The effects of cycle number, scan rate and Mg/Fe molar ratio on the CV performance of the thin-film electrodes were observed in K3[Fe(CN)6] electrolyte. The [Fe(CN)6]3? pillared Mg/Fe-LDHs with Mg/Fe molar ratio of 3 (LDH-(CN)-3) demonstrated an excellent electrochemical behavior with a potential window between ??0.2 and 1.0 V, high specific capacitance and sensitivity, indicating that the high crystallinity, large specific surface area and plentiful [Fe(CN)6]3? anions in interlayer spaces were necessary. Especially, the interlayer [Fe(CN)6]3? anions significantly affected the electrochemical behavior of the electrode, where the electrode reaction was controlled by the diffusion of [Fe(CN)6]3?/4? and Fe2+/3+ couples. Under current density of 2.5 A g?1, the optimized LDH-(CN)-3 electrode exhibited high specific capacitance of 250.81 F g?1 with good cycling stability. This facile synthesis strategy and the good electrochemical properties indicated that the LDH-(CN)-3 was a potential economical alternative material for supercapacitor application.  相似文献   

15.
Zhang J  Guo SX  Bond AM 《Analytical chemistry》2007,79(6):2276-2288
The influence of uncompensated resistance (also called the IRu effect, where I is current and Ru is uncompensated resistance) and slow electrode kinetics have been assessed for the dc and first five ac harmonics derived from Fourier transformed large-amplitude ac voltammetry. Resistance and rate constant conditions emphasized correspond to those where separation of effects attributable to either parameter is essentially impossible under conditions of dc cyclic voltammetry. Results derived from simulations and experiments demonstrate that it is relatively easy to discriminate and quantify contributions from these two effects over a wide range of values using the fourth and fifth harmonic ac components derived from single large-amplitude ac voltammetric measurement. Furthermore, these ac components also are essentially devoid of background charging current. Concepts developed initially from simulations are confirmed by experimental studies on the following: (a) the oxidation of ferrocene, in moderately resistive CH3CN and highly resistive CH2Cl2 (represents examples of IRu effect on a reversible electron-transfer process); (b) the reduction of a low 0.2 mM concentration of [Fe(CN)6]3- in the highly conductive 3 M KCl electrolyte media (case of slow kinetics with negligible IRu effect); (c) and reduction of a high 10 mM concentration of [Fe(CN)6]3- in less conductive aqueous 0.5 M KCl electrolyte media (example where the simultaneous effects of both IRu and slow kinetics need to be resolved).  相似文献   

16.
The analytical performance of hydroxyapatite Ca10(PO4)6(OH)2(HAp) screen-printed sensors designed for the detection of metals was evaluated. The hydroxyapatite plays an important role in modern analytical electrochemistry due to their usefulness for the preparation of sensors giving rise to improved responses from metals. The suitable HAp-modified carbon-paste electrode (HAp-CPE) for the electrochemical determination of lead is illustrated in this work using cyclic and square-wave voltammetry in the potential range between -0.3 and -0.8V. Perchlorate acid solution (1.0molL(-1)) was employed as the supporting electrolyte. The voltammetric measurements were carried out using as working electrode HAp-CPE, and a platinum electrode and an SCE electrode as auxiliary and reference electrodes, respectively. Under the optimized working conditions, calibration graph is linear for 5min of preconcentration time with the detection limit 7.68x10(-10)molL(-1). This detection limit is remarkably lower than those reported previously using other modified electrodes or amperometric detection. The results indicate that this electrode is sensitive and effective for the determination of Pb2+.  相似文献   

17.
Abstract

The cyclic voltammetric behavior of [Fe(CN)6]3? was investigated under homogeneous magnetic fields perpendicular to the electrode surface in order to determine the effects of magnetic fields on the distribution of an Fe2+/Fe3+ redox couple. The cathodic current was enhanced much more than the anodic current by a homogeneous magnetic field, suggesting that the concentration gradient of paramagnetic [Fe(CN)6]3? and diamagnetic [Fe(CN)6]4? formed at an electrode surface may also contribute to the asymmetric current. The apparent diffusion coefficient of the redox couple increased by over 30% in both cathodic and anodic processes upon applying a magnetic field. For a gold electrode coated with dioctadecyldimethylammonium, the application of a magnetic field perpendicular to the surface increased the peak-to-peak separation, and enhanced the asymmetric current. It is inferred that the application of a magnetic field promotes the electron-tunneling process by tilting chain molecules in the barrier membrane.  相似文献   

18.
This paper describes the fabrication and evaluation of carbon nanotube (CNT) electrodes grown on stainless steel (SS) plate and wire for electrochemical sensor applications. Multi-wall carbon nanotubes with different diameters were grown on the SS plate and wire by chemical vapor deposition from an ethylene precursor. The SS provides a good electrical and mechanical connection to the CNT, and the SS is a tough substrate. The SS part of the electrode was electrically insulated from the analyte so that only the CNT were active in sensing. Cyclic voltammetry for the reduction of 6 mM K3Fe(CN)6 in a 1.0 M KNO3 supporting electrolyte was performed to examine the redox behavior of the CNT-SS electrode. The cyclic voltammograms showed sigmoidal-like shapes, indicating that mass transport around the electrodes is dominated by radial diffusion. Based on the cyclic voltammograms, the effective area of the CNT-SS electrodes and the number of individual CNTs were estimated. These results indicate that the CNT-SS plate and wire electrodes are good candidates to develop practical in vivo biosensors.  相似文献   

19.
A UV-visible rapid scan spectrophotometer (RSS) was coupled to a Au rotating disk electrode (RDE) for monitoring at near-normal incidence the reflection-absorption spectrum of the diffusion boundary layer in [Fe(CN)(6)](4)(-) aqueous solutions over a potential region in which [Fe(CN)(6)](4-) oxidizes, generating highly absorbing [Fe(CN)(6)](3-) (lambda(max) = 420 nm). Measurements were performed under steady-state conditions at rotation rates, omega, in the range 300 相似文献   

20.
Sinusoidal large amplitude ac voltammetric techniques gene-rate very large data sets. When analyzed in the frequency domain, using a Fourier transform (FT)-band filtering- inverse FT sequence, the data may be resolved into the aperiodic dc, fundamental, second, and higher order ac harmonics. Each of these components exhibit a different level of sensitivity to electrode kinetics, uncompensated resistance and capacitance. Detailed simulations illustrate how the heuristic approach for evaluation of each data subset may be implemented and exploited in the assessment of the electrode kinetics for the fast Fc ? Fc(+) + e (Fc = ferrocene) oxidation process at a glassy carbon macrodisk electrode. The simulations presented in this study are based on the Butler-Volmer model and incorporate consideration of the uncompensated resistance (R(u)), double-layer capacitance (C(dl)), rate constant (k(0)), and charge transfer coefficient (α). Error analysis of the heuristically evaluated simulation-experiment comparison is used to assist in establishing the best fit of data for each harmonic. The result of the heuristic pattern recognition type approach for analysis of the oxidation of ferrocene (0.499, 0.999, and 5.00 mM) at a glassy carbon macrodisk electrode in acetonitrile (0.1 M Bu(4)NPF(6)) implies that k(0) ≥ 0.25 cm s(-1) on the basis of analysis of the first 4 harmonics and plausibly lies in the range of 0.25-0.5 cm s(-1) with α = 0.25-0.75 when analysis of the next four harmonics is undertaken. The k(0) value is significantly faster then indicated in most literature reports based on use of dc cyclic voltammetry under transient conditions at glassy carbon macrodisk electrode. The data analysis with a sinusoidal amplitude of 80 mV is conducted at very low frequency experiments of 9 Hz to minimize contribution from electrode heterogeneity, frequency dispersion, and adsorption, all of which can complicate the response for the oxidation of Fc in acetonitrile at a glassy carbon electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号