首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
吴浩  鲍思前  赵刚  许柳  陈建徽 《特殊钢》2014,35(6):51-53
通过Gleeble-1500热模拟机对50CrV4弹簧钢(/%:0.53C,0.18Si,0.84Mn,0.012P,0.003S,0.92Cr,0.12V,0.02Ti)50 mm连铸板坯锻制成的15 mm板进行双道次热压缩试验。研究该钢在850~1000℃以真应变0.1~0.25,应变速率0.1~10 s-1,道次间隔1~80 s形变时的静态再结晶行为,并建立了静态再结晶动力学模型。结果表明,随温度、应变量、应变速率、道次间隔时间增加,会加速50CrV4钢静态再结晶进程;在950℃,真应变0.25,应变速率为0.1,1,10 s-1时,该钢发生50%再结晶所需的时间分别为8.42,4.40,2.22 s;该钢静态再结晶激活能为249.974 kJ·mol-1。  相似文献   

2.
王炜  周律敏  熊力  薛正良 《钢铁》2015,50(7):38-42
 为了避免和减轻SS400含硼钢连铸坯表面裂纹,采用Gleeble-1500热模拟试验机对SS400含硼钢连铸坯的高温力学性能进行了测试,获得其在650~1350 ℃范围内热延塑性和高温强度的特性。试验结果表明,SS400含硼钢连铸坯的高温强度较低,且其高温强度随温度的升高而下降。SS400含硼钢的塑性区间仅在1 000~1 100 ℃温度范围内,该温度范围内试样的断面收缩率均大于90%;SS400含硼钢的低塑性区间较宽,第Ⅲ脆性温度区间为700~950 ℃,主要原因是硼在晶界的偏聚以及BN等第二相粒子在晶界析出后脆化晶界;局部区域的重熔也降低了SS400含硼钢在1 150~1 250 ℃温度区间内的塑性。  相似文献   

3.
通过Gleeble-1500热模拟试验机研究了321钢(/%:0.028C、0.69Si、1.21Mn、0.030P、0.001S、17.33Cr、9.19Ni、0.31Ti)单道次高温(900~1 200℃)压缩(0.01~1 s-1)时的动态再结晶。结果表明,变形温度越高,应变速率越低,321钢的软化作用越强,热变形条件下的真应力-真应变曲线一般没有明显的应力峰值,在应变速率0.01、0.1、1 s-1时321钢动态再结晶开始发生的温度分别为1 050、1 150、1 150℃;在1 200℃变形时,仍然只发生部分动态再结晶。321钢热变形激活能Q=422.72 kJ/mol,动态再结晶Z参数Z=εexp[422 720/(RT)],临界应变εc=0.035 67Z0.066 04。  相似文献   

4.
采用Gleeble-1500D热模拟试验机,对Φ30 mm SWRCH22A冷镦钢中间坯(/%:0.18~0.20C、≤0.05Si、0.80~0.88Mn、≤0.020P、≤0.015S、≥0.025A1)进行850~1000℃、变形速度O.1~20 s-1、真应变≤1.0的单道次压缩变形试验,得出该钢在不同变形条件下的真应力应变曲线:试验结果表明,随着温度的升高及应变速率的降低,钢的流动应力降低,且动态再结晶在高变形温度和低变形速率下更容易发生。SWRCH22A钢的动态再结晶变形能Qdef=328 264 J/ml。通过回归分析得到了SWRCH22A冷镦钢的流动应力模型和动态再结晶动力学方程,模型计算与试验结果吻合。  相似文献   

5.
试验的低碳冷镦钢(/%:0.14~0.20C,≤0.20Si,0.3~1.0Mn,≤0.030P,≤0.035S,0~0.001 9B)连铸坯的生产流程为80 t BOF-LF-280 mm×325 mm坯连铸工艺。通过Gleeble-3500热模拟机研究了0.14%~0.20%C和0~0.001 9%B对该冷镦钢600~1 200℃力学性能的影响。结果表明,该钢第Ⅲ脆性区为700~900℃,当钢中C含量较高时,最低塑性的温度较低,硼促使该钢700~950℃脆性区出现两个低谷,但当硼含量增加到0.001 9%时,该钢的高温塑性得到改善。在850~1 200℃,各试验钢的塑性良好,适合较大程度的变形,矫直温度和热加工温度宜控制在850℃以上。  相似文献   

6.
《特殊钢》2017,(5)
Φ30 mm试验冷镦钢SWRCH22A(/%:0.18C,0.04Si,0.87Mn,0.013P,0.010S,0.039Al)的生产工艺为100 t BOF-LF-150 mm×150 mm坯连铸-轧制。用Gleeble-3500热模拟试验机,在900℃和1 000℃对SWRCH22A钢以变形速率1 s~(-1)、变形量0.25,时间间隔0.5~15 s进行双道次压缩变形试验,得出应力-应变曲线。分析了变形温度和间隔时间对冷镦钢SWRCH22A静态再结晶行为的影响,采用应力补偿法计算了不同变形条件下的静态再结晶百分数。根据试验数据,计算出SWRCH22A钢的静态再结晶激活能为Q_(rex)=249 287 J/mol。参考半经验公式,得到了静态再结晶动力学模型。模型计算与试验结果吻合。  相似文献   

7.
采用Gleeble1500应力/应变热模拟试验机对1.2%Si冷轧无取向电工钢铸坯进行了高温延塑性测试;在1 300~600℃的试验温度下,得到了试样的热塑性和强度曲线,并通过对不同温度下试样的断口形貌及脆性区夹杂物的观察,分析其在脆性温度区域的脆性断裂的机理。研究结果表明:1.2%Si冷轧无取向电工钢铸坯在1.0×10-3/s应变速率下,测试温度在1 300~600℃范围内,存在1 220℃以上的第Ⅰ脆性温度区域和780~600℃的低塑性温度区域。1.2%Si冷轧无取向电工钢780~600℃时塑性降低的原因:一方面是动态再结晶困难;另一方面是铁素体低温区域发生的氮化物(AlN)及硅铝酸盐的析出产生的晶界脆化。  相似文献   

8.
通过高温压缩模拟试验结果建立TiAl基合金的热加工图,结合扫描电镜、透射电镜等试验手段,研究铸造TiAl基合金在温度为1 000~1 150℃、应变速率为0.001~1 s 1范围内的热变形行为。结果表明:铸造TiAl基合金是温度、应变速率敏感材料,其流变应力随温度升高和应变速率降低而降低。铸造TiAl基合金的高温变形机制以层片晶团的扭折、弯曲及动态再结晶过程为主。在高温(1 150℃),低应变速率(≤0.01 s 1)下变形后,铸态组织中β相含量明显减少直至消除。在变形温度1 150℃、应变速率0.001 s 1下变形时,铸造TiAl基合金未发生超塑性变形;此时由于动态再结晶晶粒异常长大导致加工图上该区域功率耗散值未达到最大,而是有减小的趋势。  相似文献   

9.
为研究CSP工艺条件下钢的动态再结晶规律,利用Gleeble-1500热模拟实验机对CSP工艺生产的Q235B钢连铸坯进行了热模拟研究。研究结果表明,在较高变形温度和较低应变速率下Q235B钢容易发生动态再结晶,试验中Q235B钢发生动态再结晶的适宜条件为:变形温度970℃以上、应变速率在5/s以下。再结晶组织为铁素体和少量珠光体。通过热模拟数据的拟合分析,得出了其动态再结晶模型为Z=εexp(289.58/RT)。  相似文献   

10.
济源钢铁公司采用60 t顶底复吹转炉高拉碳操作法,控制转炉终点[C]0.08%~0.20%,出钢过程钢包底吹氩并加铝铁脱氧,LF采用CaO-Al2O3-SiO2高碱度渣精炼,连铸钢水过热度20~30℃,M+F电磁搅拌,全程吹氩保护浇铸,铸坯堆垛缓冷工艺生产150 mm×150 mm GCr15轴承钢铸坯。实践表明,GCr15轴承钢的氧含量为(6.3~11.9)×10-6,平均氧含量为9×10-6,连铸坯的低倍组织良好。  相似文献   

11.
X65、X70管线钢高温延塑性的对比分析   总被引:2,自引:0,他引:2  
 讨论了X65、X70管线钢铸坯不同温度区间高温延塑性的差异。根据Gleeble 1500热/力模拟机得到的数据绘出X65、X70钢铸坯断面收缩率-温度曲线,利用扫描电镜、金相显微镜对断口形貌及组织进行分析,得出两钢种在各温度区间塑性差别的主要原因:①高温脆性区(tl~1 300 ℃)X70塑性较好,碳含量越高,硫、磷在奥氏体晶界的偏析量越多;②高温高塑性区(1 100~1 300 ℃)X65延塑性较好,钛含量越高,使得TiN析出物越粗大,分布越随机;③在塑性槽高温端(900~1 100 ℃),低熔点硫化物等析出,动态再结晶发生温度不同,导致两个钢种塑性明显有差别;④在塑性槽两相区(700~900 ℃),先共析铁素体的出现是两个钢种塑性低的共同原因,钛可以促进铁素体在晶内和晶界同时生成,最后X65塑性恢复较好。  相似文献   

12.
采用金相显微镜和扫描电镜分析了10B28冷镦钢线材表面结疤,得出结疤缺陷形成的主要原因是钢中N含量偏高(0.013 3%),钢中的Ti(0.033%)不足以完全固N,过剩N与B形成BN析出物,弱化晶界,形成微裂纹,导致铸坯表面开裂,最终经轧制后遗传到线材表面。通过将废钢比由21%降低为10%、降低出钢脱氧强度、造完白渣喂入钛铁线5 min后加入硼铁、控制LF软吹底吹气量和浇注过程铝损≤0.003%等措施,将N稳定控制在60×10-6以下,保证Ti/N≥4,使表面结疤不良率由原来的60%降低至1.0%以下。  相似文献   

13.
 采用Gleeble 2000高温力学性能模拟实验机对不同冷却速率及不同拉伸速率下600 MPa级Al Mo系冷轧双相钢高温热塑性进行了研究。结果表明,随拉伸应变速率增大,双相钢的高温热塑性明显提高;降低冷却速率,能显著提高双相钢高温区(t>1 100 ℃)的塑性性能。为了避免铸坯在连铸过程中产生表面裂纹,矫直温度应保证在1 050~1 150 ℃范围内,同时二次冷却应采用弱冷水制度,以降低冷却速率。金相观察发现,沿奥氏体晶界呈网状分布的铁素体薄膜是造成两相区塑性低谷的主要原因,而AlN、FeO等析出相致使奥氏体单相区脆化。  相似文献   

14.
18Mn18Cr0.6N steel specimens were tensile tested between 1173 K and 1473 K (900 °C and 1200 °C) at 9 strain rates ranging from 0.001 to 10 s?1. The tensile strained microstructures were analyzed through electron backscatter diffraction analysis. The strain rate was found to affect hot ductility by influencing the strain distribution, the extent of dynamic recrystallization and the resulting grain size, and dynamic recovery. The crack nucleation sites were primarily located at grain boundaries and were not influenced by the strain rate. At 1473 K (1200 °C), a higher strain rate was beneficial for grain refinement and preventing hot cracking; however, dynamic recovery appreciably occurred at 0.001 s?1 and induced transgranular crack propagation. At 1373 K (1100 °C), a high extent of dynamic recrystallization and fine new grains at medium strain rates led to good hot ductility. The strain gradient from the interior of the grain to the grain boundary increased with decreasing strain rate at 1173 K and 1273 K (900 °C and 1000 °C), which promoted hot cracking. Grain boundary sliding accompanied grain rotation and did not contribute to hot cracking.  相似文献   

15.
通过50 kg真空感应炉冶炼,用常规流程和薄带铸轧两种工艺分别在实验室制备了含稀土钇的3%Si取向硅钢。薄带铸轧浇注温度1530℃,轧制速率0.3 m/s,铸带厚度2.5 mm。常规流程为80 mm铸坯加热温度1150℃,热轧板厚度2.4 mm,终轧温度935℃。采用扫描电镜(SEM)和电子探针(EPMA)研究了钢中夹杂物成分、形貌、数量、尺寸和分布;利用光学显微镜(OM)和电子背散射衍射(EBSD)分析了硅钢铸带、热轧板、0.3 mm冷轧板、870℃7 min和1100℃10 min再结晶退火板组织和织构。实验结果表明:与常规流程相比,薄带铸轧硅钢一次再结晶后晶粒较细小,且γ织构强度达到17,但是二次再结晶后晶粒尺寸不均匀,平均晶粒尺寸为61μm,部分Goss取向晶粒尺寸达到1 mm以上。原因为细小的含钇夹杂物数量过多,且分布不均匀,夹杂物聚集的区域晶粒长大受到明显抑制。常规流程生产的含钇硅钢二次再结晶热处理后晶粒均匀长大,平均晶粒尺寸为102μm,没有形成明显的Goss织构。  相似文献   

16.
17.
对轴承钢的冷装和热装加热进行实验室热模拟,对不同热装温度加热后的铸坯晶粒度级别进行分析,对比冷装条件下晶粒度,找到合理的热装温度。试验结果表明,当热装温度超过700℃,其铸坯组织的晶粒和冷装相比明显变得粗大,晶粒度级别在1~2级;根据生产现场连铸坯相变前的平均冷却速度为0.41℃/s,GCr15轴承钢连铸坯的热装温度应控制在670℃以下。  相似文献   

18.
林鹏  张洪才  许正周 《特殊钢》2020,41(3):43-46
55钢(/%:0.52~0.60C,0.17~0.37Si,0.50~0.80Mn,≤0.035P,≤0.035S)的150 mm×150 mm连铸坯轧钢加热炉加热后存在表面纵向裂纹缺陷。采用金相显微镜对铸坯皮下裂纹缺陷进行分析,结果得出:由于二次冷却不均匀和有害元素Pb在晶界富集导致铸坯皮下产生细小裂纹并扩展长大。通过对二次冷却喷淋系统优化及降低钢水有害元素Pb含量,改善二冷段喷淋冷却效果,提高铸坯冷却均匀性,提高铸坯晶界强度,结果表明:铸坯缺陷明显改善,轧材一次探伤合格率从45%提高到93%。  相似文献   

19.
By means of Gleeble-1500 dynamic thermomechanical simulator, the continuous casting process for HRB335C steel was simulated using solidifying method and hot ductility and strength of the steel were determined. The test results indicate that there are three temperature regions of brittleness for HRB335C billet in the temperature range from 700 ℃ to solidification point; the first temperature region of brittleness is 1 300 ℃ to solidification point of the billet, the second temperature region of brittleness is 1 200-- 1 000 ℃, and the third temperature region of brittleness is 700-850 ℃ ; the steel is plastic at 850--1 000 ℃. The cracking sensitivity was studied in the different temperature zones of the brittleness for steel HRB335C and the target surface temperature curve for the secondary cooling is determined. With optimized process, the mathematical model of the steady temperature field with two-dimensional heat transfer for 150 mm×150 mm HRB335C steel billet was established to optimize the secondary cooling process. The conic relation of water distribution between secondary cooling water flux and casting speed is regressed. Keeping the surface temperature of billet before the straightening point above 1 000 ℃, the results of billet test indicate that there is free central shrinkage cavity. The billet defect is decreased greatly, and the quality of billet is obviously improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号