首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 343 毫秒
1.
研究了轴棒法C/C复合材料在室温及高温下的轴向拉伸性能,并用扫描电镜观察了高温拉伸试样的断口形貌。结果表明,轴棒法C/C复合材料在室温及高温下的断裂模式不同,且高温下的拉伸强度高于室温下的拉伸强度;以常压炭化结束的C/C复合材料开孔率变大,室温及高温下的拉伸强度小于以高压炭化结束的C/C复合材料。  相似文献   

2.
采用不同温度预处理的轴棒法4D预制体、煤沥青为前驱体,经过常压、高压相结合的液相浸渍-炭化的致密工艺,制备出高密度轴棒法C/C复合材料,观察了材料的金相结构,测试了材料2 800℃的高温拉伸强度。结果表明:高温预处理对轴棒法C/C复合材料界面性能产生影响,随着预处理温度升高,炭棒与基体之间的间隙越来越大;经过高温预处理的材料的高温拉伸强度远高于未经高温预处理的材料,预处理温度为2 100℃的材料高温拉伸强度相对较高。  相似文献   

3.
谭鑫明  刘勇琼  廖英强 《炭素》2011,(2):28-30,27
轴棒法炭/炭复合材料中炭棒的轴向拉伸力学性能是数值模拟的关键数据,而由于炭棒的脆性及自身不易测量等特点,国内外研究不多。本文采用创新方法,对2500℃高温处理后炭棒轴向拉伸力学性能进行了测试,测试结果表明:经过2500℃处理过的炭棒和未经过高温处理过的炭棒进行比较,前者断裂力下降较大,下降了62%,弹性模量略有上升,上升幅度为37%,符合文献数据,证明了试验方法的有效性。  相似文献   

4.
软硬混编预制体增强沥青基4D-C/C材料弯曲行为   总被引:2,自引:0,他引:2  
以z向穿插炭棒、x-y向铺层纤维束法编织的软硬混编4D炭纤维预制体为增强体,采用沥青液相浸渍/炭化法制备了4D-C/C复合材料,研究了材料z向(炭棒方向)高温弯曲行为及损伤机理。结果表明:在室温~2 100℃范围,随着温度的升高,4D-C/C复合材料z向弯曲强度呈现先增加后减小的趋势,在室温~1 800℃时弯曲强度呈现增加的趋势,1 800℃后随着温度升高弯曲强度开始逐渐降低,但当温度达到2 100℃时其弯曲强度仍比室温下稍高。在室温~2 100℃范围,随着温度的升高,软硬混编预制体增强沥青基4D-C/C复合材料z向弯曲断裂应变一直呈增加的趋势,而弯曲弹性模量总体呈减小的趋势。室温下4D-C/C应力-应变曲线几乎为线性关系,高温下4D-C/C复合材料z向弯曲破坏更加趋向于非线性的破坏模式。损伤表征结果表明,随着温度的升高,材料破坏时的最大损伤逐渐增加。  相似文献   

5.
魏博鑫  崔红  张晓虎 《炭素》2013,(2):19-23
综述了近年来国内外针刺C/C复合材料拉伸性能和韧性研究进展,归纳了影响针刺C/C复合材料拉伸性能和韧性的主要因素,即炭纤维、炭基体、界面和针刺工艺参数等,初步得到了提高材料拉伸性能和韧性的方法:提高针刺C/C材料拉伸性能的方法主要是提高纤维体积分数;提高针刺C/C材料韧性的方法主要是改善致密工艺。在此基础上,对未来的进一步研究进行展望。  相似文献   

6.
1前言纤维增强复合材料必须具有较高的纤维一基体界面剪切强度,这是因为复合材料承受的载荷是通过纤维一基体界面剪应力传递给纤维的。不过,由于复合材料所要求的性能不尽相同,往往过高的界面剪切强度反而引起不利。例如,在纤维增强复合材料破坏过程中,龟裂面上纤维的拔起可以吸收破坏能,此时,如果界面剪切强度过高,纤维便不能被拔起只能断掉,这样一来,吸收的破坏能自然地会减少。因此,要提高复合材料的破坏能,就存在着最佳的界面剪切强度问题[1]。同样地,单向纤维增强复合材料的纤维轴向拉伸强度也存在着最佳的界面剪切强度,…  相似文献   

7.
不同增强结构炭/炭复合材料力学及抗烧蚀性能   总被引:1,自引:0,他引:1  
分别采用轴棒法编织、轴向穿刺以及无纬布/网胎针刺3种结构预制体,经致密化处理得到高密度C/C复合材料,研究了材料力学性能、抗烧蚀性能,并评价了3种增强结构材料的整体性能。结果表明,C/C材料轴向拉伸强度与预制体轴向纤维含量、纤维连续状态有关。轴向穿刺、轴棒法C/C材料轴向拉伸强度明显高于无纬布/网胎针刺C/C材料,但无纬布/网胎针刺C/C材料的径向压缩强度最高。经300 s氧-乙炔烧蚀后无纬布叠层针刺C/C材料的线烧蚀率和质量烧蚀率最低,抗烧蚀最好,烧蚀过程主要受热化学烧蚀和机械剥蚀共同作用。  相似文献   

8.
《硅酸盐学报》2021,49(4):666-672
对平纹编织C/SiC复合材料样品拉伸破坏过程的声发射进行监测,采用基于改进遗传算法的无监督聚类方法对声发射信号进行模式识别,统计分析各类声发射模式的特征及其演化过程,结合断口分析,研究了C/SiC复合材料的拉伸强度、损伤机制与声发射信号演化之间的关系。结果表明:维断裂的声发射能量能够反映纤维/基体界面结合强度;低强度C/SiC材料中存在引起应力集中的基体富集区,在加载初期基体开裂事件占比超过50%;中强度C/SiC材料由于较强的界面,纤维损伤以单丝或部分纤维断裂事件为主;高强度C/SiC材料界面结合强度适中,纤维簇断裂是主要的失效模式。  相似文献   

9.
对平纹编织C/SiC复合材料样品拉伸破坏过程的声发射进行监测,采用基于改进遗传算法的无监督聚类方法对声发射信号进行模式识别,统计分析各类声发射模式的特征及其演化过程,结合断口分析,研究了C/SiC复合材料的拉伸强度、损伤机制与声发射信号演化之间的关系.结果表明:维断裂的声发射能量能够反映纤维/基体界面结合强度;低强度C/SiC材料中存在引起应力集中的基体富集区,在加载初期基体开裂事件占比超过50%;中强度C/SiC材料由于较强的界面,纤维损伤以单丝或部分纤维断裂事件为主;高强度C/SiC材料界面结合强度适中,纤维簇断裂是主要的失效模式.  相似文献   

10.
炭前驱体形态对C/C复合材料导热系数的影响   总被引:1,自引:0,他引:1  
利用热塑性中间相沥青为黏结剂,短炭纤维.增强体,一步热压成型制备C/C导热复合材料.采用SEM和偏光显微镜观察等分析手段,研究了2∶1,2.5∶1和3∶1三种不同管径比对C/C复合材料的影响.结果表明:通过热压模具空腔结构的改变可以引起炭前驱体挤出形态的变化,使得轴向基体炭有序生长与短炭纤维增强体呈现有序排列,其中间相液晶分子垂直和平行于模压压力方向均排列成纤维状长程有序结构,短切纤维呈现出与压力平行方向排布.当空腔管径比为3:1,轴向导热系数由86.2 W/(m·K)增大至115.5 W/(m· K),各向异性比由1.6减小为1.2.由此所得块体C/C复合材料具有显著的二维取向结构,轴径向导热系数趋于平衡.  相似文献   

11.
Nextel 610 fibre-reinforced mullite-based matrix fabricated by Dornier Forschung was characterised at DLR Institute of Materials Research. The material was produced by the polymer route after coating the fibres with a 0.1 μm thick carbon layer. The composite was manufactured by infiltrating the fibres with a slurry containing a diluted polymer and mullite powder, curing in an autoclave and subsequently heat treating and pyrolysis of the polymer. A final heat treatment in air is performed to remove the carbon coating and to reduce the residual stresses. A (0/90/0/90/0/90)s-laminate was produced with an average fibre volume fraction of 45.6% and a porosity of 15.9%. Dog-bone-type tensile specimens with a width of 10 mm were cut from the plate by water jet and tested at temperatures up to 1200°C in air. The tensile strength at room temperature measured 177.4 MPa and linearly decreased to 145.2 MPa at a temperature of 800°C. A stronger decrease occurred at 1000 and 1200°C. In contradiction to ceramic matrix composites manufactured by the CVI-route the stress–strain behaviour is nearly linear up to failure. The modulus of the composite (at room temperature 108.8 GPa) is analysed on the basis of the expected moduli of the fibres and the mullite matrix. It can be concluded that the contribution of the matrix to the modulus of the composite is low, caused by porosity and components other than mullite. The intralaminar shear strength at room temperature measured 36 MPa. This value reflecting shear transfer capability of fibre to matrix limits the amount of fibre pull-out.  相似文献   

12.
纤维含量对C/C复合材料力学性能的影响   总被引:11,自引:0,他引:11  
研究了炭纤维含量对C/C复合材料力学性能的影响,用扫描电镜(SEM)对材料的断口进行分析,结果表明:当炭纤维的体积分数小于8.3%时,随着炭纤维体积分数的增加,复合材料的抗折强度逐渐升高;之后,随着炭纤维的体积分数的增加,复合材料的抗折强度逐渐下降,短纤维增强C/C复合材料的断口特征为大量纤维拔出,其断裂过程为界面破坏所控制。  相似文献   

13.
涂层工艺对C/C复合材料结构和弯曲性能的影响   总被引:2,自引:0,他引:2  
采用热处理和包埋工艺制备了C/C复合材料的MoSi2/SiC抗氧化涂层,对组织结构、界面、弯曲断口进行了显微观察,分析了氧化保护涂层及其工艺对其机械性能的影响,结果表明,该工艺在C/C复合材料表面生成涂层的同时,使基材内部的界面也被硅化;并且发现,热解炭基体比炭纤维更易与Si反应生成SiC。C/C复合材料经涂层工艺处理后,弯曲强度降低;热处理过程中发生的材料氧化是弯曲强度下降的主要原因  相似文献   

14.
Among ceramic matrix composites (CMCs), carbon fiber-reinforced silicon carbide matrix (C/SiC) composites are widely used in numerous high-temperature structural applications because of their superior properties. The fiber–matrix (FM) interface is a decisive constituent to ensure material integrity and efficient crack deflection. Therefore, there is a critical need to study the mechanical properties of the FM interface in applications of C/SiC composites. In this study, tensile tests were conducted to evaluate the interfacial debonding stress on unidirectional C/SiC composites with fibers oriented perpendicularly to the loading direction in order to perfectly open the interfaces. The characteristics of the material damage behaviors in the tensile tests were successfully detected and distinguished using the acoustic emission (AE) technique. The relationships between the damage behaviors and features of AE signals were investigated. The results showed that there were obviously three damage stages, including the initiation and growth of cracks, FM interfacial debonding, and large-scale development and bridging of cracks, which finally resulted in material failure in the transverse tensile tests of unidirectional C/SiC composites. The frequency components distributed around 92.5 kHz were dominated by matrix damage and failure, and the high-frequency components distributed around 175.5 kHz were dominated by FM interfacial debonding. Based on the stress and strain versus time curves, the average interfacial debonding stress of the unidirectional C/SiC composites was approximately 1.91 MPa. Furthermore, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDXS) were used to observe the morphologies and analyze the chemical compositions of the fractured surfaces. The results confirmed that the fiber was completely debonded from a matrix on the fractured surface. The damage behaviors of the C/SiC composites were mainly the syntheses of matrix cracking, fiber breakage, and FM interfacial debonding.  相似文献   

15.
The paper presents manufacture of C/C-SiC composite materials by wet filament winding of C fibers with a water-based phenolic resin with subsequent curing via autoclave as well as pyrolysis and liquid silicon infiltration (LSI). Almost dense C/C-SiC composite materials with different winding angles ranging from ±15° to ±75° could be obtained with porosities lower than 3% and densities in the range of 2 g/cm3. Thermomechanical characterization via tensile testing at room temperature and at 1300°C revealed higher tensile strength at elevated temperature than at room temperature. Thus, C/C-SiC material obtained by wet filament winding and LSI-processing has excellent high-temperature strength for high-temperature applications. Crack patterns during pyrolysis, microstructure after siliconization, and tensile strength strongly depend on the fiber/matrix interface strength and winding angle. Moreover, calculation tools for composites, such as classical laminate and inverse laminate theory, can be applied for structural evaluation and prediction of mechanical performance of C/C-SiC structures.  相似文献   

16.
The tensile creep and creep fracture properties in air at 1300 °C are documented for two ceramic fibre-reinforced ceramic–matrix composites (CFCMCs). These recently developed materials were produced with woven bundles of Hi-Nicalon™ fibres reinforcing either A12O3 or enhanced SiBC matrices, allowing data comparisons to be made with similar CFCMCs having different fibre–matrix combinations. The results confirm that the longitudinal fibres govern the rates of strain accumulation and crack growth, but the fracture characteristics are determined by fibre failure caused by oxygen penetration as matrix cracks develop. The analysis then suggests that carbon fibre-reinforced doloma–matrix composites could offer a combination of creep-resistant fibres and creep damage-resistant matrices suitable for long-term load-bearing service in high-temperature oxidizing environments.  相似文献   

17.
L.M Manocha  S Manocha  A.A Ogale 《Carbon》2003,41(7):1425-1436
Carbon/carbon composites were prepared with ribbon-shape pitch-based carbon fibers serving as reinforcement and thermosetting PFA resin and thermoplastic pitch as matrix precursors. The composites were heat treated to 1000, 1600 and 2700 °C. Microstructural transformations taking place in the reinforcement, carbon matrix, and the interface were studied using polarized optical and scanning electron microscopy. The fiber/matrix bond and ordering of the carbon matrix in heat-treated composites was found to vary depending on the heat treatment temperature of the fibers. Stabilized fiber cleaved during carbonization of resin-derived composites. In contrast, fibers retain their shape during carbonization of pitch matrix composites. Optical activity was observed in composites made with carbonized fibers; the extent decreases with increased heat treatment of the fibers. Studies at various heat treatment temperatures indicate that ribbon-shape fibers developed ordered structure at 1600 °C when co-carbonized with thermosetting resin or thermoplastic pitches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号