首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用逆向递推设计法,利用TSMC0.18μm CMOS工艺,设计实现了适用于超高速光纤通信系统的激光驱动器电路。核心电路为两级直接耦合差分放大器。电路设计中采用电感并联峰化技术拓展带宽和降低功耗。后仿真结果表明,在1.8V电源供电时,工作速率10Gb/s,输入单端峰峰值为400mV的差分信号,在50Ω的负载上可提供2.2V的输出电压。电路功耗185mW。版图面积为0.9mm〉40.95mm。  相似文献   

2.
采用SMIC0.18μm1P6M混合信号CMOS工艺设计了10Gb/sVCSEL电压驱动器,可以用于驱动共阴结构的VCSEL。电路采用了RC负反馈技术和C3A(电容耦合电流放大器)结构,仿真结果表明,电路在10Gb/s速率下工作性能良好,最高可工作至12.5Gb/s。电路采用1.8V和3.5V电压供电,直流总功耗为164mw。  相似文献   

3.
采用SMIC0.18μm 1P6M混合信号CMOS工艺设计了10Gb/s限幅放大器。该放大器采用了带有级间反馈的三阶有源负反馈放大电路。在不使用无源电感的情况下,得到了足够的带宽以及频率响应平坦度。后仿真结果表明,该电路能够工作在10Gb/s速率上。小信号增益为46.25dB,-3dB带宽为9.16GHz,最小差分输入电压摆幅为10mV。在50Ω片外负载上输出的摆幅为760mV。该电路采用1.8V电源供电,功耗为183mW。核心面积500μm×250μm。  相似文献   

4.
介绍了基于0.35μm CMOS工艺的2.5Gb/s时钟恢复电路设计。根据工艺特点,电路采用倍频器加全模拟镇相环蛄构。模拟表明,电路能工作在2.5Gb/s速率上,镇定范围达到100MHz,5V电压供电下功耗小于330mW。  相似文献   

5.
介绍一种用于千兆以太网的1.25Gb/s分接器电路。该电路实现了1路1.25Gb/s高速差分数据到10路125Mb/s低速并行单端数据的分接功能。电路采用树型分接器结构进行设计,包含一个高速1:2分接器电路和两个低速1:5分接器电路。芯片采用台湾TSMC的0.25μm混合信号标准CMOS工艺进行设计,后仿真结果表明,所设计电路完全达到了千兆以太网的系统要求。可以工作在1.25Gb/s的数据速率上。  相似文献   

6.
设计并实现了用于光纤用户网和千兆以太网光接收机的限幅放大器。电路采用有源电感负载来拓展带宽、稳定直流工作点 ,通过直接耦合技术来提高增益、降低功耗。测试结果表明 ,在从 5 m Vp- p到 5 0 0 m Vp- p,即40 d B的输入动态范围内 ,在 5 0 Ω负载上的单端输出电压摆幅稳定在 2 80 m Vp- p。在 5 V电源电压下 ,功耗仅为1 30 m W。电路可稳定工作在 1 5 5 Mb/s、62 2 Mb/s、1 .2 5 Gb/s三个速率上。  相似文献   

7.
10 Gb/s 0.18 μm CMOS时钟恢复芯片   总被引:2,自引:1,他引:1       下载免费PDF全文
袁晟  冯军  王骏峰  王志功 《电子器件》2003,26(4):434-437
介绍了基于0.18μmCMOS工艺的10Gb/s时钟恢复电路的设计。核心电路采用预处理加简单锁相环的结构。模拟结果表明,该电路能工作在10GHz频率上,输入信号峰值0.4V时,同步范围可以达到270MHz,总功耗210mW。  相似文献   

8.
雷恺  缪瑜  冯军  王志功 《半导体光电》2005,26(4):350-352
介绍了基于0.18μm CMOS工艺设计的10Gb/s光发射机电路,包括复接器和激光驱动器两部分.仿真结果表明,在1.8V电源电压作用下该电路可工作在10Gb/s速率以上,输入四路单端峰峰值为0.2V的信号时,在单端50Ω负载上的复接输出电压摆幅可达到1.4V以上,电路功耗约为230mW.芯片面积为1.77mm×0.94mm.  相似文献   

9.
介绍了使用0.2μm GaAsHEMT工艺设计的一个10Gb/s以上的光纤传输用2:1复接器。该复接器使用了半速率时钟的结构。为了减小功耗,设计时使用了3.3V的电源,并对每个单元进行了优化。整个芯片的功耗约为460mW。测试结果显示,该电路可以工作在10Gb/s以上的数据速率。  相似文献   

10.
李文渊  王志功 《半导体学报》2005,26(12):2455-2459
采用0.2μm GaAs PHEMT工艺设计并实现了超高速光纤通信系统用激光二极管/调制器集成驱动器电路.整个电路由带源极跟随器的两级差分放大电路、电容耦合电流放大器和输出电路组成.电路芯片面积为1.0mm×0.9mm.测试结果表明,采用单一 5V电源供电时直流功耗为1.5W,输出最高电压幅度为2.4V,电路最高工作速率高于24Gb/s,可以应用于光纤通信SDH(synchronous digital hierarchy)传输系统.  相似文献   

11.
采用0.2μm GaAs PHEMT工艺设计并实现了超高速光纤通信系统用激光二极管/调制器集成驱动器电路.整个电路由带源极跟随器的两级差分放大电路、电容耦合电流放大器和输出电路组成.电路芯片面积为1.0mm×0.9mm.测试结果表明,采用单一+5V电源供电时直流功耗为1.5W,输出最高电压幅度为2.4V,电路最高工作速率高于24Gb/s,可以应用于光纤通信SDH(synchronous digital hierarchy)传输系统.  相似文献   

12.
采用0.35um CMOS工艺设计了用于光纤传输系统的低功耗16:1复接器,实现了将16路155.52Mb/s数据复接成路2.5Gb/s的数据输出的功能。该复接器以混合结构形式实现:低速部分采用串行结构,高速部分采用树型结构。具体电路由锁存器、选择器及分频器组成,以CMOS逻辑和源极耦合逻辑(SCL)实现。用Smart SPICE软件进行仿真的结果显示:在3.3V供电时,整体电路的复接输出最高工作速度可达3.5Gb/s,功耗小于300mW。  相似文献   

13.
本文介绍了笔者使用cadence设计的0.35um CMOS高速8位流水线电流导引数模转换器。电路采用了高速解码电路、双路并行处理、流水线等技术,使系统处理速度从传统的500M采样/秒达到1.5G采样/秒,输出差分电压在2个50欧姆的电阻上达到3.1V,电压精度达到1.55*2^-1V。在国外同类设计中处于领先水平。  相似文献   

14.
胡艳  王志功  冯军  熊明珍 《半导体学报》2003,24(12):1250-1254
采用TSMC 0 .2 5μm CMOS技术设计实现了高速低功耗光纤通信用限幅放大器.该放大器采用有源电感负载技术和放大器直接耦合技术以提高增益,拓展带宽,降低功耗并保持了良好的噪声性能.电路采用3.3V单电源供电,电路增益可达5 0 d B,输入动态范围小于5 m Vpp,最高工作速率可达7Gb/ s,均方根抖动小于0 .0 3UI.此外核心电路功耗小于4 0 m W,芯片面积仅为0 .70 mm×0 .70 m m.可满足2 .5 ,3.12 5和5 Gb/ s三个速率级的光纤通信系统的要求.  相似文献   

15.
摘 要: 利用TSMC 0118 Lm CMO S 工艺设计的, 应用于光纤传输系统SDH STM 264 速率级(10 Gb?s ) 的单片光接收 机。该接收机包括限幅放大器、时钟恢复、数据判决电路。后仿真可工作在10 Gb?s 速率上。该电路采用118V 电源电压, 功耗500 mW , 50 8 负载上单端输出。摆幅340 mV , 芯片面积11968 mm ×11135 mm。  相似文献   

16.
一种应用于高速光纤通讯系统的激光二极管/调制器的单片集成驱动电路已开发成功。该电路的制造使用了0.2μm PHEMT工艺,它的工作信号带宽超过12GHz。在12Gb/s速率下测得了摆幅峰值为3.4V的输出信号眼图。基于实验结果,我们判断该电路的最大工作速率超过24Gb/s。该驱动器电路使用单电源-4.5V供电,功耗小于1.8W。  相似文献   

17.
利用TSMC 0.18 μm CMOS工艺设计的,应用于光纤传输系统SDH STM-64速率级(10 Gb/s)的单片光接收机.该接收机包括限幅放大器、时钟恢复、数据判决电路.后仿真可工作在10 Gb/s速率上.该电路采用1.8 V电源电压,功耗500 mW,50 Ω负载上单端输出.摆幅340 mV,芯片面积1.968 mm×1.135 mm.  相似文献   

18.
研究了超高速(10Gb/s)NRZ码时钟数据恢复电路的行为级建模,并采用TSMC 0.18 μm CMOS工艺进行了电路级仿真。  相似文献   

19.
0.18μm CMOS 10Gb/s 4:1复接器集成电路设计   总被引:3,自引:0,他引:3  
本文主要介绍采用0.18μm CMOS工艺设计用于光纤传输系统的4:1复接器。该复接器采用树型结构源级耦合逻辑(SCFL)电路实现;仿真结果显示:速度达到12.5Gb/s,功耗小于400mw;版图设计使用Cadence软件完成,其面积为2.4平方毫米;最后在TSMC流片。  相似文献   

20.
采用TSMC 0.25μm CMOS技术设计实现了高速低功耗光纤通信用限幅放大器.该放大器采用有源电感负载技术和放大器直接耦合技术以提高增益,拓展带宽,降低功耗并保持了良好的噪声性能.电路采用3.3V单电源供电,电路增益可达50dB,输入动态范围小于5mVpp,最高工作速率可达7Gb/s,均方根抖动小于0.03UI.此外核心电路功耗小于40mW,芯片面积仅为0.70mm×0.70mm.可满足2.5,3.125和5Gb/s三个速率级的光纤通信系统的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号