首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
针对在三维重构过程中用L—M(Levenberg—Marquardt)方法求解超二次曲面参数拟合问题的不足,提出了用粒子群优化算法来进行超二次曲面参数拟合的新方法.本文详细阐述了超二次曲面的三维表示特性,L—M算法拟合超二次曲面参数模型的分析,以及用粒子群优化算法拟合超二次曲面参数模型的原理、实现方法和实验结果.用粒子群优化算法对超二次曲面进行参数拟合,克服了L—M方法的缺陷,取了满意的效果.  相似文献   

2.
粒子群优化算法(PSO)由于其原理简单、较易实现等特点,得到广泛研究和应用.为加快优化速度,提高收敛精度,文中提出基于PSO的队伍演化算法.该算法将优化过程分为两个阶段: 第一阶段为保持多样性,把队员分成若干个初级队伍并行优化,形成高级队伍; 后一阶段为提高收敛速度,仅优化高级队伍.在整个优化过程中,根据评估队员所取得的成绩,动态控制队员的调整步长和最大调整空间,同时产生教练组,为队员的进步方向提供指导.通过高维多峰测试函数进行测试对比,验证文中算法的优越性和有效性.  相似文献   

3.
用并行化的QPSO解决有约束的优化问题   总被引:1,自引:0,他引:1  
马艳  须文波  孙俊  刘阳 《计算机应用》2006,26(9):2047-2050
采用粒子群系统的并行化的量子化模型提高全局搜寻能力,在解决约束问题时采用不固定的多阶段任务补偿函数以提高收敛性,并获得更准确的结果,提出了并行化的QPSO(PQPSO)算法。此算法在几个可信赖的基准函数中被测试,并且实验结果显示PQPSO的最优值和运行时间比QPSO和传统的PSO有很大的提高,而且运行所用的时间资源接近线性减少。  相似文献   

4.
针对协同微粒群优化存在的停滞现象,提出了一种新的基于粒子空间扩展的协同微粒群优化算法。该算法通过引入粒子半径来确定粒子间是否发生相互碰撞,如果两个粒子一旦发生碰撞,则按预先设定的位置更新公式跳出原来的位置,从而避免陷入停滞状态。对三个典型函数的测试结果表明,新算法不仅能够有效地克服了停滞现象,而且显著提高了搜索更优解的能力和鲁棒性。  相似文献   

5.
输电网络扩展规划是一个复杂的多变量多约束的非线性整数规划问题,针对传统粒子群算法易陷入局部最优、收敛慢的缺陷,本文将协同进化思想与粒子群优化算法结合,提出了一种协同粒子群优化算法,并将该算法应用于输电网络规划,建立了数学模型,该模型以达到线路的年综合费用最小为目标函数,并在此基础上设计了相应的算法。算例将其应用到一个10节点系统和一个22节点系统,计算结果证明了该算法在输电网络规划优化中应用的可行性和有效性。  相似文献   

6.
崔晓晖  印桂生  董红斌 《软件学报》2015,26(7):1601-1614
服务匹配是服务发现的主要环节.目前,原子服务匹配过程主要存在服务匹配概念狭窄、匹配算法的时间复杂度较高及匹配方案的表示难以被智能优化算法处理等问题.针对上述问题,在原子服务匹配的基础上引入复合服务匹配、抽象复合服务匹配过程的适应度函数及约束条件,设计适用于智能优化算法处理的匹配方案的表示方法.同时,结合协同演化算法设计思路,提出基于粒子群和模拟退火的协同演化算法(PSO-SA),用以求解复合服务匹配.实验结果表明:与现有智能优化算法相比,PSO-SA可在有限迭代次数内获得精度较高的匹配结果,对不同维度的服务匹配问题具有较高的适应性,可用于提高服务发现结果的质量.  相似文献   

7.
蒋云良  赵康  曹军杰  范婧  刘勇 《控制与决策》2021,36(8):1825-1833
近年来随着深度学习尤其是深度强化学习模型的不断增大,其训练成本即超参数的搜索空间也在不断变大,然而传统超参数搜索算法大部分是基于顺序执行训练,往往需要等待数周甚至数月才有可能找到较优的超参数配置.为解决深度强化学习超参数搜索时间长和难以找到较优超参数配置问题,提出一种新的超参数搜索算法—–基于种群演化的超参数异步并行搜...  相似文献   

8.
PSO算法在MAV群并行仿真试验中的应用研究   总被引:1,自引:0,他引:1  
利用MAV群执行搜索任务具有安全、快速、高效等优点,无论在军用还是民用方面都将发挥不可替代的作用.考虑到MAV群的续航能力和提高搜索效率的需要,在执行搜索任务的时候首先确定一条"最短"路径至关重要.寻找最短路径问题已经有许多成熟的方法,研究的是采用粒子群优化算法求解最短路径的问题.与其他求解TSP问题的方法相比,粒子群优化算法具有概念简单、鲁棒性好、智能背景深刻等优点;尤其重要的是它天生具有并行计算的潜质,适于并行化后应用到并行仿真中去.实现了PSO算法的并行化,并验证了运行结果的正确性.  相似文献   

9.
蒋炜  彭新一  周育人 《计算机工程》2009,35(20):181-183
提出一种基于改进粒子群优化算法的基因调控网络重构方法。该方法利用粒子群优化算法确定加权矩阵模型的最优结构及参数,从而推测出与实验数据相吻合的加权矩阵,实现利用重构的加权矩阵模型模拟基因调控网络的相互作用。实验结果表明,该方法能有效推理出复杂的基因调控网络结构。  相似文献   

10.
针对基于二维超声阵列的三维目标成像问题,提出了一种基于渡越时间法与超二次曲面模型的三维目标成像算法。利用改进的Unitary-ESPRIT算法得到特征点的方位角,利用渡越时间法(TOF)得到空间特征点的距离,将特征点的方位角与距离相结合,利用三角几何关系,将其转换为特征点的坐标。利用改进的Levenberg-Marquardt算法进行参数拟合,最终实现三维目标的成像。仿真结果表明:该算法能够实现基于超声阵列的三维目标的成像,且最终得到的拟合参数的误差基本控制在10%以内。  相似文献   

11.
基于文化进化的并行粒子群算法   总被引:4,自引:0,他引:4       下载免费PDF全文
为了改善粒子群算法对大规模问题求解的性能,提出一种基于文化进化的并行粒子群算法,阐述了该算法的原理和具体实施方案。选取背包问题作为算法的应用对象,通过对仿真实例进行计算和结果比较,表明该算法在最优值、求解速度、稳定性等方面具有较好的 效果。  相似文献   

12.
非线性回归模型的参数估计是较为困难的寻优问题,经典方法常会陷入局部极值。由于粒子群算法是一种有效的解决优化问题的群集智能算法,它的突出特点是操作简便、容易实现且全局搜索功能较强,故将粒子群优化算法用于非线性系统模型参数估计,并通过对6种非线性回归模型的参数估计进行了验证。实验结果表明:粒子群优化算法是一种有效的参数估计方法。  相似文献   

13.
提出一种协同进化PSO算法,用于保持粒子种群的多样性并避免发生“早熟”的问题.该方法采用两个不同的分群;其中分群一的粒子采用标准PSO算法进行搜索寻优,分群二的粒子采用差异演化算法进行搜索和寻找最优解.在搜索过程中,如果标准PSO算法的适应度变化率低于一个阈值,则按照黄金分割率用分群二中的若干优势粒子取代分群一中的劣势粒子.用所提出的PSO算法和标准PSO算法对4种常用函数进行优化.结果表明,该粒子群优化算法比标准粒子群优化算法更容易找到最优解,而且优化效率和优化性能明显提高.  相似文献   

14.
针对粒子群优化算法在优化多极值点复杂问题时容易陷入局部极值的不足,提出一种新的分阶段进化的粒子群优化算法。该方法进化过程分为两个阶段,每个阶段对应一个不同的模型,通过结合这两种模型的各自优点有效地降低群体陷入局部最优。仿真实验结果表明,对于复杂多极值函数优化问题,本文算法比标准粒子群算法的寻优能力更强。  相似文献   

15.
具有粒子群特征的优化并行蚁群算法   总被引:1,自引:2,他引:1       下载免费PDF全文
孙琦  王东 《计算机工程》2008,34(24):208-210
针对蚁群算法在实际应用中存在的计算时间较长、容易陷入局部最优等问题,提出一种新的具有粒子群特征的优化并行蚁群算法,并将该算法与其他相关算法相结合,共同用于物流联盟车辆调度实例中。实验结果表明,该算法在减少计算时间以及避免早熟现象等方面具有较高的性能。  相似文献   

16.
一种改进快速稳定的多目标优化算法   总被引:2,自引:0,他引:2  
多目标优化问题属于高维的搜索空间,用一些传统方法来优化这些问题会导致较高的时间复杂性.为了解决该问题,使用了粒子群优化算法(PSO),同时将ε-dominance的概念应用到PSO中.该方法在实验过程中取得了良好的效果.其运算速度快,而且最终优化的点数可以得到控制.  相似文献   

17.
并行处理已经成为现代计算技术的一项关键技术。近几年软件的发展使得异构计算机集合可以作为并行计算资源使用,本文探讨如何在环形网络拓扑结构中将差分进化算法并行,以提高该方法的速度和性能。实验结果表明,子群中交流信息分配到不同节点的范围对该算法的性能有重大影响。此外,并不是差分进化中所有的突变策略都同样对此参数的值敏感。  相似文献   

18.
在协同差异进化(CCDE)算法和整体同步并行(BSP)计算模型的基础上,提出一种并行协同差异进化算法。采用Archive协同机制取代 CCDE原有的协同机制,有助于得到算法最优解,并使用BSP模型实现CCDE的并行计算。利用标准测试函数进行仿真实验,结果表明,该算法具有较高的计算效率和计算质量。  相似文献   

19.
基于文化粒子群算法的约束优化问题求解   总被引:4,自引:0,他引:4  
提出一种基于文化算法的粒子群优化算法(PSO)。该算法在群体空间采用基于高斯概率分布和柯西概率分布的改进PSO算法,在信念空间根据形势知识和规范化知识指导种群的进化,充分利用优秀个体所包含的信息,提高了算法的进化速度。实验表明,该算法的优化性能和效率优于基本PSO算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号