首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
搅拌摩擦加工(FSP)是一种处理金属表面的固态改性方法。在此过程中,由于非自耗刀具的旋转和来回移动,使金属表面组织细化、力学性能提升。提高FSP效率的方法较多,本研究中采用的是一种叫振动搅拌摩擦加工(FSVP)的新方法。在此方法中,金属工件在FSP过程中与加工线垂直振动。分析比较FSP法和FSVP法加工的Al5052合金试样的显微组织和力学性能,包括硬度、极限抗拉强度(UTS)和伸长率。结果表明,采用FSVP后,振动可使材料的晶粒尺寸减小约33%,极限抗拉强度和硬度提高约7%。这与振动作用下金属表面材料的应变增强有关。应变增加导致位错密度增加,动态再结晶使大角度晶界进一步发育。结果还表明,FSV加工试样的极限抗拉强度和伸长率均随振动频率的增加而增加。  相似文献   

2.
选用轧态AZ31镁合金为基体、C60颗粒为增强相,采用搅拌摩擦加工技术(FSP)制备镁合金表面复合材料,搅拌针头旋转速度为600 r·min~(-1),加工速度为118 mm·min~(-1),分别进行1~3道次FSP加工后,通过金相、透射、硬度和拉伸等测试,对搅拌加工区复合显微组织和力学性能进行表征分析。研究表明:FSP可使镁合金晶粒显著细化; C60加入后,在1~3道次FSP内,随着加工道次升高,C60分散程度上升,复合材料平均晶粒尺寸降低,材料硬度上升,抗拉强度上升,但弥散于晶间的团聚颗粒使其拉伸性能低于母材;添加C60后的试样中,2道次硬度有明显上升,最高硬度可达母材的1. 73倍,3道次试样硬度平均值最高。结果表明,可通过FSP制备镁基表面复合层强化材料。  相似文献   

3.
采用搅拌摩擦工艺以A356合金为基体金属制备B_4C/A356复合材料。利用人工神经网络(ANN)和非支配排序遗传算法-Ⅱ研究复合材料的显微组织和力学性能。首先,研究不同加工条件下制得的复合材料的显微组织。结果表明,搅拌摩擦工艺参数如搅拌头的旋转速度、横向移动速度和形状显著影响基体中初始Si颗粒的尺寸、复合材料层中B_4C增强剂的分散效果及体积分数。采用高旋转/移动速度比和螺纹销形状搅拌头能获得较好的颗粒分布、较细的Si颗粒和较少的B_4C团聚体。其次,通过硬度和拉伸试验研究复合材料的力学性能。结果显示,经搅拌摩擦工艺处理后样品的断裂机理由脆性断裂转变为延性断裂。最后,利用人工神经网络技术建立了搅拌摩擦工艺参数与复合材料显微组织和力学性能的关系。采用结合多样性保护机制的NSGA-Ⅱ法,即ε消除算法得到搅拌摩擦工艺参数的Pareto最优解集。  相似文献   

4.
在6082铝板的凹槽中填充SiC颗粒(平均粒径为27.5μm),用一种新型多步搅拌摩擦加工(FSP)法制备Al/SiC梯度功能复合材料(FGM)。为了得到预先设定的梯度结构,使用3种工具进行FSP,每种工具的搅拌针长度不同,SiC颗粒的体积分数也不同。FSP在室温下进行,其工艺参数如下:1~3道次、旋转速度为900r/min、前进速度为20mm/min。利用扫描电子显微镜(SEM)和三维光学显微镜对梯度功能样品的显微组织进行表征,且测试其耐磨性和显微硬度等力学性能。结果表明,随着FSP道次的增加,SiC颗粒分散更加均匀,材料的显微硬度增加。与未加工的6082铝合金相比,经3道次加工后,其显微硬度提高51.54%。添加SiC颗粒后,Al/SiC梯度功能使复合材料的耐磨性提高。  相似文献   

5.
搅拌摩擦加工研究进展   总被引:1,自引:0,他引:1  
搅拌摩擦加工(FSP),是一种新型的材料塑性变形加工方法,它是在搅拌摩擦焊(FSW)的基础上提出的。从发明至今,研究者已经成功将FSP用于铸造金属微观组织细化、超塑性材料的制备、材料表面改性以及各种复合材料的制备中。搅拌摩擦加工工艺与搅拌摩擦焊接工艺基本相同,工艺参数对搅拌摩擦加工材料质量有很大的影响。综述了搅拌摩擦加工近年来的研究进展,主要包括不添加增强相的FSP和添加增强相的FSP两大类。其中不添加增强相的FSP主要有铸造金属微观组织细化和超塑性材料制备,添加增强相的FSP主要有材料表面改性和复合材料制备。搅拌摩擦加工制备复合材料根据添加相是否与基体反应生成增强相,又分为非原位合成法制备复合材料与原位合成法制备复合材料。文中对以上内容分别进行了总结与评述,最后指出了FSP今后发展应用的方向。  相似文献   

6.
利用液氮冷却装置减少了搅拌摩擦加工(FSP)过程中的热输入,采用SEM、显微硬度仪和试样拉伸设备对搅拌区显微组织和力学性能进行了测试分析。研究表明:通过液氮冷却作用减小热输入、减小搅拌头转速和增加搅拌摩擦道次均有利于减小搅拌区晶粒尺寸。液氮冷却条件下,搅拌头转速和进给速度分别为1000 r/min和37 mm/min时,两道次加工得到的搅拌区晶粒平均尺寸减小至100 nm左右,同时搅拌区硬度提高为原材料的2.7倍。液氮冷却环境FSP试样的屈服强度、抗拉强度和伸长率分别是自然冷却环境FSP试样的1.39、1.35和1.31倍。强度最大试样断口处分布着大量微米级韧窝和少量解理面,呈韧性断裂为主的混合断裂特征。  相似文献   

7.
《铸造技术》2015,(7):1636-1638
采用机械搅拌法制备了体积分数分别为3%、6%和9%的Si C颗粒增强铝基复合材料,研究了该复合材料的显微组织和力学性能。结果表明,Si C颗粒的添加量为6%时,颗粒在基体中的分布最好。挤压态的组织明显优于铸态。随着增强相颗粒添加量的增大,材料的拉伸强度逐步提高,含量在9%左右时达到最高,复合材料的塑性随添加量的增大而降低,但硬度有所增加。  相似文献   

8.
镁合金表面搅拌摩擦原位复合材料化的新方法   总被引:2,自引:1,他引:1       下载免费PDF全文
为了解决搅拌摩擦加工在进行复合材料制备过程中增强相需预置,及在基体中分布不均的问题,提出表面搅拌摩擦原位复合材料化的新方法.利用搅拌头在轧制态AZ31镁合金板材上进行表面复合材料制备,并对制备的复合材料进行显微观察、微观硬度测试、表面耐磨度测试.结果表明,相较于预置搅拌摩擦加工制备复合材料的方法,文中方法能够使增强相在基体中分布更加弥散、均匀,从而进一步提高复合材料层的显微硬度,以及材料表面的耐磨度,同时简化了搅拌摩擦加工制备复合材料的工艺过程.  相似文献   

9.
利用搅拌摩擦加工(FSP),将纳米尺寸的氧化铈(CeO_2)和碳化硅(SiC)颗粒以单独和混合形式嵌入Al5083合金基体,制备表面复合材料,并研究这些增强相对合成的表面复合层显微组织和耐磨性能的作用。在室温下用销-盘式磨损试验机检测合成的单独和混合表面复合层的磨损特性。用光学显微镜和扫描电镜观察FSPed区和磨损表面的显微组织。在熔核区可观察到显著的晶粒细化和均匀分布的增强颗粒。与基体金属相比,所有复合材料都具有更高的硬度和更好的耐磨性。其中,混合复合材料Al5083/CeO_2/SiC的耐磨性能最好,摩擦因数最低,而Al5083/SiC的硬度最高,是Al5083基体合金硬度的1.5倍。混合复合材料表面耐磨性能的提高是由于CeO_2颗粒的固体润滑效果。非复合材料中主要的磨损机制是严重的粘着磨损,当存在增强颗粒时转变为磨粒磨损和分层。  相似文献   

10.
采用搅拌摩擦加工(FSP)方法制备Al-Pb表面复合材料,以提高其减摩抗磨性能,使用SEM、EBSD、纳米压痕仪和显微硬度计等分析其微观组织、织构和硬度分布。结果表明:使用FSP方法制备Al-Pb表面复合材料,Pb颗粒受到重力和搅拌作用,主要分布于盆状搅拌加工区的底部。塑性金属对流形成的洋葱环结构中,存在富Pb片层和形变铝基体片层。富Pb片层内的Pb颗粒,起到了良好的细化晶粒作用。形变铝基体片层分布有少量直径约100 nm的新生Pb粒。受到细晶强化作用影响,富Pb颗粒区的硬度显著高于形变铝基体。加工区底部的SZ-AS区形成强Cube再结晶织构;SZ-RS区形成Cube织构和少量Brass织构;CSZ区的Cube织构较少,{111}织构增强;上部的AS区形成强Goss织构,RS区织构相对随机。  相似文献   

11.
采用搅拌摩擦加工法制备铝基SiC复合层,研究不同加工道次下SiC颗粒在复合层中的分布形态,并对复合层的组织形貌和显微硬度进行分析。结果表明:加工次数的增加,有利于复合层中SiC颗粒的均匀分布,经4道次搅拌摩擦加工后复合层中SiC颗粒分布均匀,基体金属组织中粗大Si相和枝晶完全消失,组织被明显细化。增强相SiC颗粒的加入使复合层显微硬度得到提高,4道次加工后搅拌摩擦中心区显微硬度最高值为71 HV,较基体金属(45HV)提高了26 HV,搅拌摩擦区的显微硬度平均值为68HV,为基体金属显微硬度(45HV)的1.5倍。  相似文献   

12.
采用搅拌摩擦加工技术制备体积分数为19.5%的多壁碳纳米管(MWCNTs)增强AZ80镁基复合材料,研究经多道次搅拌摩擦加工(FSP)加工后复合材料的显微组织和MWCNTs在基体中的分布和稳定性,分析MWCNTs与基体的界面结构特征。结果表明:多道次FSP能提高MWCNTs在基体中的分散性,并在基体中形成了纳米晶,晶体尺寸仅5 nm左右。经多道次FSP后,MWCNTs在径向上的多壁结构未受到机械损伤,但经7道次加工后,在复合材料中发现有少量Al4C3相;碳纳米管与镁基体以半共格的界面形式相接。  相似文献   

13.
采用搅拌摩擦工艺合成Cu/B4C表面复合材料,并分析搅拌速度对该复合材料显微组织和滑动磨损行为的影响。搅拌速度以200 r/min从800变化至1200 r/min,横向速度、轴向力、沟槽宽度及搅拌头外形保持不变。采用光学和扫描电子显微镜对所制备表面复合材料的显微组织进行观察。采用销盘滑动磨损试验装置研究该表面复合材料的滑动磨损性能。结果表明:搅拌速度对表面材料的面积和B4C颗粒的分布具有显著影响。在较高的搅拌速度下此复合材料中B4C颗粒分布均匀;而在低搅拌速度下B4C颗粒分布均匀性较差。此外,本文报道搅拌速度对复合材料的颗粒尺寸、硬度、磨损率、磨损表面和磨屑的影响。  相似文献   

14.
采用搅拌摩擦工艺合成Cu/B4C表面复合材料,并分析搅拌速度对该复合材料显微组织和滑动磨损行为的影响。搅拌速度以200 r/min从800变化至1200 r/min,横向速度、轴向力、沟槽宽度及搅拌头外形保持不变。采用光学和扫描电子显微镜对所制备表面复合材料的显微组织进行观察。采用销盘滑动磨损试验装置研究该表面复合材料的滑动磨损性能。结果表明:搅拌速度对表面材料的面积和B4C颗粒的分布具有显著影响。在较高的搅拌速度下此复合材料中B4C颗粒分布均匀;而在低搅拌速度下B4C颗粒分布均匀性较差。此外,本文报道搅拌速度对复合材料的颗粒尺寸、硬度、磨损率、磨损表面和磨屑的影响。  相似文献   

15.
采用搅拌摩擦加工(FSP)技术对铸态Mg-Zn合金进行表面处理,以提高其耐空蚀—腐蚀性能。使用SEM、EDS、XRD、显微硬度计观察和测定表面改性层的显微组织、元素分布、相组成和显微硬度,使用超声振动空蚀设备和电化学工作站研究其耐空蚀—腐蚀性能。结果表明:FSP技术能够细化和均匀铸态组织,消除成分偏析,提高材料表面硬度。FSP合金在人工海水中更易形成腐蚀产物膜,其保护性能更优,是FSP样品耐腐蚀性能提升的主要原因。铸态样品经FSP改性后硬度依然较低,故蒸馏水条件下的耐空蚀性能未获提升,但改性后合金良好的耐腐蚀性能提升了其在人工海水条件下的耐空蚀性能。  相似文献   

16.
本研究提供了一种采用搅拌摩擦加工(FSP)制备NiTi颗粒增强WE43镁基复合材料的有效手段。采用SEM结合EDS对FSP试样的微观结构进行了研究,采用XRD进行了物相分析。结果表明,制备的复合材料具有形状记忆效应。较低的加工温度有效地阻止了NiTi颗粒与Mg基体在FSP过程中的界面反应。无论粒径大小,在FSP后,NiTi颗粒都均匀分布在Mg基体中。此外,与Mg基体相比,NiTi/WE43复合材料的屈服强度、极限拉伸强度和延伸率分别降低了33%、12%和18%。随着加入的NiTi颗粒尺寸的增大,该复合材料拉伸强度和延伸率均降低。复合材料的失效机理是颗粒之间的界面开裂以及增强颗粒的断裂。  相似文献   

17.
采用水下搅拌摩擦加工制备CoCrFeNiMn高熵合金颗粒增强6061-T6基复合材料,研究了时效热处理对CoCrFeNiMn/6061Al复合材料微观组织、显微硬度和磨损性能的影响。采用扫描电镜和电子背散射衍射技术对复合材料的微观组织进行了表征,采用显微硬度和磨损实验对复合材料的性能进行了评价。结果表明,经5道次搅拌摩擦加工后,CoCrFeNiMn高熵合金颗粒均匀分布在Al基体中,且与基体界面结合良好,无明显扩散层。时效热处理后,CoCrFeNiMn高熵合金颗粒与基体界面出现厚度约为200 nm的扩散层,复合材料的平均显微硬度达到120.0 HV,比Al基体提高了27.7%。与Al基体相比,复合材料的平均摩擦因数从0.4491升高至0.4855。时效热处理后,复合材料的平均摩擦因数降低至0.3188,主要磨损机制为磨粒磨损。  相似文献   

18.
TA2工业纯钛表面搅拌摩擦加工组织及性能   总被引:1,自引:0,他引:1  
对TA2工业纯钛成功实现了搅拌摩擦加工(Friction Stir Processing, FSP),研究FSP后搅拌区、热机影响区、热影响区组织特征,对比分析FSP加工区与母材的显微硬度及摩擦磨损性能。结果表明:TA2工业纯钛表面经FSP后,搅拌区晶粒发生了剧烈的塑性变形、混合和破碎,实现组织结构的致密化、均匀化和细化;加工区平均硬度相对母材提高37.5%,当摩擦磨损圈数分别为1000、1500、2000 r时,摩擦磨损质量损失分别比母材减少31.4%、36.6%和46.4%,经FSP后TA2工业纯钛表面硬度和抗摩擦磨损性能明显提高  相似文献   

19.
对6 mm厚的6061-T6铝合金板分别进行超声辅助搅拌摩擦加工(UAFSP)和搅拌摩擦加工(FSP),研究超声振动对搅拌摩擦加工金属流动和组织演变的影响。研究结果表明:超声振动可显著降低加工过程的轴向压力,并提高金属塑性流动能力。UAFSP焊核区峰值温度较FSP的更高,导致UAFSP焊核区的晶粒略大于FSP的。UAFSP和FSP的显微硬度分布曲线均呈现典型的"W"型特征。UAFSP和FSP焊核区的硬度相当,析出相发生回溶。与FSP相比,UAFSP的软化区向母材方向偏移,后退侧偏移距离更大,软化区存在大量棒状β'相,是导致其硬度最低的主要原因。距焊核区中心等距离位置UAFSP热影响区的硬度较低,这是由于UAFSP的热影响区β'相数量更多导致的。  相似文献   

20.
对AZ31镁合金挤压型材实施了搅拌摩擦加工(Friction Stir Processing·FSP),利用光学显微镜和拉伸试验机研究了搅拌摩擦加工对试样加工硬化率及力学性能的影响。结果表明,AZ31镁合金经搅拌摩擦加工后,晶粒得到细化,均匀伸长率和总伸长率相近,室温伸长率达22%;拉伸应变超过0.03时,搅拌区材料的加工硬化率超过母材,此时搅拌区和母材的显微组织中均出现变形孪晶,不同的是搅拌区材料的变形孪晶整体呈带状分布,且加工硬化率也较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号