首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LK-C2从废线路板酸性浸出液中萃取回收铜   总被引:2,自引:1,他引:1  
以LK-C2为萃取剂,从废弃线路板酸性浸出液中选择性萃取回收铜,分别研究杂质阳离子、阴离子、pH值、萃取时间、萃取剂浓度和相比(O/A)对萃取效果的影响。结果表明:采用LK-C2从废线路板酸性浸出液中可选择性萃取分离铜,铜/铁分离系数超过2000,溶液中锌和锡几乎不被萃取;随萃取平衡pH值的增大,铜的萃取率升高;随萃取剂在有机相中浓度增加和相比增加,铜回收率增大;阴离子NO3-、SO42-和Cl-对萃取无明显影响。萃取剂每从溶液中萃取1mol铜,将置换2mol氢离子。室温下LK-C2萃取铜的最佳工艺条件:LK-C2体积浓度为15%,相比O/A为1:1,水相初始pH为2.00,萃取时间为10min。在优化条件下,一级萃取率达99.78%;用2.00mol/L硫酸溶液对负载有机相进行反萃,经三级逆流反萃,铜的反萃率达到97.51%。  相似文献   

2.
提出一种从钒页岩中回收有价元素并制备钒电解液的工艺。结果表明,在料液pH值为2.6、萃取剂D2EHPA浓度为20%、相比(O/A)为1:1、萃取时间为8 min、H2SO4浓度为4 mol/L及反萃时间为30 min的条件下,钒萃取率为99.3%,反萃率为99.8%。对制备的电解液组成及电化学性能进行详细研究。溶液化学和红外光谱分析表明,浸出液中氯离子可以与钒离子络合,促进钒的萃取。采用本研究提出的工艺能实现钒页岩的综合利用,并避免钒电解液制备过程中有害物质对环境的潜在污染。  相似文献   

3.
采用酸化伯胺A-N1923-酒石酸钠体系,研究强碱性溶液中的钒、铬萃取分离行为,同时考察铝在钒、铬萃取分离过程中的走向。结果表明:碱性溶液中添加少量的酒石酸钠,可显著抑制钒铬的共萃,即使在浓度大于0.1 mol/L的NaOH溶液中,仍然可以实现钒、铬的萃取分离;钒、铬、铝的萃取分离受酒石酸钠浓度、料液初始碱度、初始钒铬浓度、萃取相比及萃取剂浓度等影响较大。当料液pH值在10~13之间时,钒/铬、铝/铬的分离系数可分别达到89和60。298 K时,有机相对钒的饱和萃取容量为5.855 g/L。萃取负载有机相可以先用0.5mol/L的硝酸钠溶液选择性反萃铝,然后用1.5 mol/L的硝酸钠溶液反萃钒,反萃后有机相可再生循环使用。  相似文献   

4.
白铜合金废料综合回收工艺   总被引:1,自引:1,他引:0  
采用粉碎白铜合金废料→酸浸出→N902萃取分离出铜离子→P204萃取分离出锌离子→水相中剩余硫酸镍溶液工艺回收白铜合金废料中的有色金属.经实验得到较优回收工艺条件是将初步机械粉碎的白铜合金投入硫酸溶液中反应,得到浸出液;使用铜特效萃取剂N902首先分离出浸出液中的铜离子.结果表明,萃取剂N902对铜具有较好的选择性.在相比为1:1、pH值为0.57、N902的体积浓度为50%,混合时间为90 s的条件下,铜的萃取率达到99.36%.使用2 mol/L的硫酸进行反萃操作,平衡时间仪为30 s,反萃回收率达到99.68%;使用萃取剂P204萃取分离后续水相溶液中的锌离子,在相比为2:1、pH值为2.93、P204体积浓度为40%的条件下,混合时间为1 min,经5级萃取后锌离子的萃取率为99.73%,且几乎不萃取水相中的镍,选择性分离效果好.使用1 mol/L的硫酸反萃,经40 s混合后,反萃达甲衡,富锌有机相的反萃率为100%.整条工艺完成了铜、镍和锌3种主要离子间的分离,得到硫酸铜、硫酸锌和硫酸镍3种产品.  相似文献   

5.
用N235-TBP混合体系从硫酸盐溶液中协同萃取除铁   总被引:8,自引:0,他引:8  
研究了采用N235-TBP协同萃取体系从硫酸盐溶液中萃取除铁,考察了萃取体系、N235浓度和料液初始pH值对Fe(Ⅲ)萃取的影响以及相比(Vorg/Vaq)、H2SO4浓度和平衡pH值对Fe(Ⅲ)反萃的影响.结果表明:N235和TBP对硫酸盐溶液中的Fe(Ⅲ)具有协同萃取效应;加入TBP能有效地抑制载铁有机相的分层,提高Fe(Ⅲ)的反萃率;料液初始pH值及N235浓度对Fe(Ⅲ)的萃取率影响显著,萃铁曲线的最高点随着N235浓度的增大向低pH值方向移动;以含30%N235和10%TBP(体积分数)的有机相作萃取剂,在相比(Vorg/Vaq)为2:1的条件下,含铁12.73 g/L的合成料液经过3级错流萃取,萃余液中含铁低于0.15 g/L,铁的总萃取率接近99%;以0.4 mol/L的H2SO4为反萃剂,控制反萃液平衡pH小于0.8,铁的单级反萃率大于96%;含铁7.05 g/L的有机相在相比为1:1时,经过2级错流反萃,铁基本上被反萃完全,贫有机相不经处理可以循环使用.  相似文献   

6.
采用有机磷类萃取剂—D2EHPA,EHEHPA和CYANEX 272在煤油体系中从硫酸介质中萃取钒(IV)。考察溶液pH值、萃取剂浓度、钒离子浓度、温度对钒萃取性能的影响,并确定萃合物的组成。结果表明:随着水相pH值、萃取剂浓度和温度的升高,钒(IV)的分配比增大。D2EHPA可以在更低的pH值下萃取钒(IV),表明其对钒的萃取能力大于EHEHPA和CYANEX 272。萃取机理研究结果表明:3种有机磷类萃取剂对钒的萃取均符合离子交换机理,在低pH值条件下萃合物组成为VOR2(HR)2,在高pH值下萃合物组成为VOR2(R表示萃取剂)。  相似文献   

7.
采用有机磷类萃取剂—D2EHPA,EHEHPA和CYANEX 272在煤油体系中从硫酸介质中萃取钒(IV)。考察溶液pH值、萃取剂浓度、钒离子浓度、温度对钒萃取性能的影响,并确定萃合物的组成。结果表明:随着水相pH值、萃取剂浓度和温度的升高,钒(IV)的分配比增大。D2EHPA可以在更低的pH值下萃取钒(IV),表明其对钒的萃取能力大于EHEHPA和CYANEX 272。萃取机理研究结果表明:3种有机磷类萃取剂对钒的萃取均符合离子交换机理,在低pH值条件下萃合物组成为VOR2(HR)2,在高pH值下萃合物组成为VOR2(R表示萃取剂)。  相似文献   

8.
为实现从废汽车尾气净化催化剂的浸出液中高效分离钯,合成一种新化合物N-甲基-N-异丙基硫代辛酰胺(TA-813)。通过FT-IR、1H NMR、ESI-MS和元素分析进行表征,研究TA-813对钯的萃取和反萃行为。通过萃取-反萃循环试验评估TA-813的循环使用性能,并用TA-813从废汽车尾气净化催化剂的模拟浸出液中选择性萃取分离钯。结果表明:TA-813对钯萃取速度快、效率高、选择性好;2个TA-813分子萃取1个Pd;有机相中负载的钯可被中性和酸性硫脲高效反萃;TA-813循环使用性能好,经过8次萃取-反萃循环,钯的萃取率没有降低。在废汽车尾气净化催化剂的模拟浸出液中,Pd的浓度远低于杂质离子La、Ce、Mg和Al等,即便如此,TA-813仍能实现钯的选择性高效分离。  相似文献   

9.
以次氧化锌酸性浸出液为原料,采用两段溶剂萃取的方法实现铟与其他金属离子的有效分离,并循环利用工艺过程中使用的盐酸,减少氯离子的排放。研究采用P204从浸出液中萃取、盐酸反萃铟的行为,以及采用TBP/P350混合萃取剂从P204载铟有机相盐酸反萃液中选择性萃取铟、水反萃等过程中铟的行为,考察萃取剂浓度、混合时间、酸浓度和相比等因素对铟萃取率和反萃率的影响。结果表明:采用10%P204(体积分数)在相比(A/O)为2/1的条件下,经过2级逆流萃取,浸出液中99%铟被萃取,得到的P204载铟有机相采用6 mol/L盐酸反萃,铟反萃率达100%。得到的含铟盐酸反萃液再采用TBP/P350选择性萃取铟,在相比为3/2条件下,经过2级逆流萃取,铟萃取率为99%,得到的载铟有机相采用纯净水进行3级逆流反萃,铟被反萃完全。与传统工艺相比,氯离子排放量减少86%。基于上述实验结果,提出从次氧化锌酸性浸出液中萃取分离铟的工艺流程,在实现铟高效回收的同时,降低氯离子的排放,达到资源高效利用和减少污染物排放的目的。  相似文献   

10.
铬渣是重要的工业固体废物,具有极其严重的环境危害性,分离提取铬的资源化利用是减少铬渣环境污染和资源浪费的有效途径。以1-辛基-3-甲基咪唑四氟硼酸盐离子液体([Omim][BF_4])为萃取剂,戊醇为稀释剂,对铬渣酸浸液进行萃取和反萃取实验。在萃取实验过程中,分别考察萃取剂浓度、时间、pH等条件的影响作用。采用斜率法及红外光谱分析进行了萃取机理研究,最后进行了反萃取实验研究。结果表明:在萃取剂浓度ρ([Omim][BF_4])=50.0 g/L、6.0 min、pH为1.408~2.006条件下,Cr_2O_7~(2-)的萃取率达到94.81%;[Omim][BF_4]对Cr_2O_7~(2-)的萃取主要是根据软硬酸碱理论通过离子缔合形成萃合物达到较高的萃取率;在pH=10、反萃取剂为0.5mol/L NaBr+0.5 mol/L(NH_4)_2SO_3、15.0 min的条件下,铬的反萃率达到99.35%。实现了铬渣中铬资源的分离提取。  相似文献   

11.
研究了用胺醇萃取剂NTAB-182在盐酸介质中萃取铂时pH、稀释剂、萃取平衡时间及萃取剂浓度的影响。用NaOH可完全反萃铂。用连续变换法、饱和法及元素分析法确定了萃合物的组成。通过红外光谱及紫外光谱确定该体的萃取机理为离子缔合。萃取动力学研究表明,萃取反应主要在界面上进行。  相似文献   

12.
采用HBL121从锌置换渣高浓度硫酸浸出液中萃取回收镓   总被引:2,自引:0,他引:2  
针对现行的湿法炼锌渣中萃取镓工艺存在调酸复杂、添加络合剂成本高、有机相损失严重等弊端,采用新型萃取剂HBL121从锌置换渣的高浓度硫酸浸出液中直接萃取镓,考察料液酸度、萃取剂浓度、萃取温度、萃取时间和相比对萃取的影响以及H2SO4浓度、反萃温度、反萃时间和反萃相比对反萃的影响,分别绘制萃取平衡等温线和反萃平衡等温线,并对萃取剂转型条件进行研究。结果表明:以有机相组成为40%HBL121(质量分数)+20%癸醇(体积分数)+磺化煤油作为萃取剂,料液酸度为108.67 g/L H2SO4,其最佳萃取条件为萃取温度25℃、萃取时间10 min、相比O/A=1:1,经过4级逆流萃取,镓萃取率达到98.14%。负载有机相用200 g/L的H2SO4溶液可选择性反萃镓,得到高纯度硫酸镓溶液,其最佳反萃条件为反萃温度25℃、反萃时间8 min、相比O/A=4:1。经过5级逆流反萃,反萃率可达到99.18%。反萃镓后负载有机相再用7 mol/L盐酸溶液反萃共萃的铁并转型,控制反萃温度25℃、反萃时间2 min、O/A=1.5:1,经过3级逆流反萃,铁反萃率可达到99.23%并完成转型,萃取剂循环使用。  相似文献   

13.
以Cu2+-NH3-Cl--H2O氨性溶液为被萃水相,研究高位阻β-二酮和LIX 84混合萃取剂对铜的萃取.考察混合萃取剂β-二酮和LIX 84总浓度及相对含量、被萃水相pH值及总氨浓度和相比等因素对铜萃取的影响.结果表明,最优萃取条件如下:β-二酮与LIX 84的体积比为1:1,萃取剂浓度为20%,水相铜离子浓度为3 g/L,总氨浓度为3mol/L(氨与氯化铵的摩尔比为1:2),初始pH值为8.95,相比(O/A)为1:1,反萃剂(硫酸)浓度为90g/L.在此最优条件下,铜萃取率接近100%,共萃氨量为36.1 mg/L,反萃率达97%.  相似文献   

14.
溶剂萃取法从废电子元件中回收钯   总被引:4,自引:3,他引:4  
蔡水洪 《贵金属》1990,11(4):18-24
用溶剂萃取法从硝酸浸取液中提取Pd~(2+)与Cu~(2+),Ni~(2+).N_(235)作Pd~(2+)的萃取剂,煤油作稀释剂,癸醇作调相剂,最佳工艺条件是萃取剂组成,25%N_(235)—10%癸醇—65%煤油;硝酸浓度,0.5~3mol/L;温度,室温;1.5mol/L HNO_2作负载有机相杂质离子Ni~(2+),Cu~(2+)的洗涤剂,其一次洗涤率近100%;6%硫脲,或5%氨水作负载有机相中Pd~(2+)的反萃剂,其一次反萃率分别为98.6%,68.5%.  相似文献   

15.
对N235萃取除铁进行研究,考察H2O2用量、料液初始pH、萃取剂浓度、萃取剂组成、萃取时间对萃取的影响以及H2SO4浓度、反萃时间对反萃的影响,设计错流萃取过程并绘制反萃平衡等温线,对萃取剂转型条件进行研究。结果表明:H2O3+2用量为理论量3.85倍时可将Fe2+完全氧化成Fe,并采用有机相组成30%(体积分数)N235+10%(体积分数)TBP+磺化煤油作为萃取剂,料液初始pH为0.11,其最佳萃取条件如下:萃取温度25℃,萃取时间2 min,相比O/A为1:1。经过4级错流萃取,其Fe3+萃取率可达96.96%,Cu2+、Co2+、Ni2+损失率分别为3.04%、1.39%和3.84%,有机相负载采用0.3 mol/L硫酸可反萃得到纯度为98.87%的Fe2(SO4)3溶液,其最佳反萃条件为反萃温度25℃,反萃时间6 min,相比O/A=1:1。经两级逆流反萃,Fe3+反萃率达99.12%,反萃铁后的负载酸有机相经Na2CO3中和转型,返回使用。  相似文献   

16.
采用高位阻β-二酮(1-(4’十二烷基)苯基-3-叔丁基-1,3-丙二酮)作为萃取剂从模拟印刷电路板(PCBs)蚀刻废液中萃取铜。利用离子强度与萃取反应平衡常数的关系校正模拟的萃取等温线,该模拟萃取等温线与实验测得萃取等温线基本相符。通过实验确定萃取剂浓度、相比、萃取级数和反萃级数等萃取工艺参数。结果表明,在室温下对于铜离子浓度为112g/L、总氨浓度为7mol/L的模拟氨性蚀刻废液的最佳萃取条件为:萃取剂浓度为40%,相比为5:4,萃取时间为5min。在此条件下,经过一级萃取,蚀刻废液中铜离子浓度可降低至63.24g/L,能返回到电路板的生产中循环使用。用含铜30g/L,硫酸浓度180g/L的模拟废电解液对负载有机相进行反萃,相比(O/A)为1:2,经一级反萃,铜的反萃率可达98.27%。  相似文献   

17.
以研制的有机、无机复合膜为支撑体,在单膜膜器中进行萃铜研究,提出了包括化学反应在内的五项阻力萃铜传质模型;考察了膜萃取萃铜过程的主要影响因素,查明了水相初始铜浓度、有机相萃取剂浓度、水相及有机相流速等对膜萃取萃铜过程的影响规律;并对从低品位铜矿浸出液中提取铜进行了探索研究.结果表明,采用复合膜的膜萃取工艺可成功地从低浓度含铜料液中提取铜。  相似文献   

18.
金的新萃取剂—(2-乙基己基)-乙基醚   总被引:1,自引:1,他引:1  
用标题的萃取剂,以1,2-二氯乙烷及环己烷为稀释剂及异戊醇为添加剂研究它们对金的萃取及反萃性能。确定各种因素对金萃取的影响。结果表明:~εAu>99%,用氯化钠作反革剂,反萃率为96.9~100%。  相似文献   

19.
采用HBL101萃取石煤高酸浸出液中的钒   总被引:3,自引:0,他引:3  
针对现行石煤提钒萃取工艺及研究现状,提出采用新型萃取剂HBL101从石煤高酸浸出料液中直接萃取钒的方案,考察料液的酸度、料液电位、萃取时间、相比以及温度对萃取率的影响,绘制HBL1010萃取等温曲线。结果表明:在料液酸度为1.458 mol/L,萃取温度为35~45℃,萃取时间为10min,相比O/A=1/1(油相与水相体积比)的条件下,钒的单级萃取率达到95%以上。三级逆流萃取实验结果显示,钒的萃取率达到99.7%以上。采用NaOH对负载有机相进行反萃,反萃液经调节pH后直接加入NH4Cl沉钒,得到的五氧化二钒纯度达到98.68%以上。  相似文献   

20.
针对酸浸液钒铁分离的难题,绘制298 K时V(Ⅴ)-Fe(Ⅲ)-S(Ⅵ)-H2O系中存在的各种离子随pH以及浓度变化的热力学平衡图,全面分析钒、铁物种随pH和钒、铁、硫浓度的变化规律,在此基础上提出相应的钒铁分离方法并进行理论分析。结果表明:强酸条件(?1相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号