首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
综述了木质纤维素类生物质热解技术的研究进展,总结了不同生物质原料的热解机理,分析了产物的组成和性质,研究了产物的调控、改性和应用。指出未来的研究方向应该集中在以下几方面:技术改进,致力于改进生物质热解技术,提高能源转化效率和产物选择性;产品多样化,除了生物质热解产生的主要能源产品,如生物炭、生物油和生物气,还应着眼于开发高价值的化学品和材料,包括生物基化学品、特殊化学品和高性能材料;集成系统,应尝试将生物质热解与其他能源转化技术相结合,形成多能源联供系统,与生物质发酵、光催化、电解和储能等技术集成,以提高整体能源系统的效率和可持续性。  相似文献   

2.
正我国生物燃料产业经过十几年的发展,已经形成十几条技术转化路线,生物质气化-合成油、生物质裂解提质油、EL类生物燃油、生物MTG油、CBGTL油、藻类油/燃气、生物质气化-合成天然气等各种新型生物燃料有望在今后几年商业化。用生物质原料制合成气,目前已开发出多系列达到示范工厂和商业应用规模的气化炉。采用气化-合成工艺生产生物天然气,可用木质类和干秸秆类原料,突破了微生物发酵法对原料的严格限制。  相似文献   

3.
石油炼厂加工生物原料的前景   总被引:2,自引:1,他引:1  
杨永泰 《中外能源》2009,14(7):59-66
第二代生物燃料和化学品可采用加氢转化、加热裂化或催化裂化、生物质气化和合成气转化等几种方法生产。石油炼制厂商在考虑采用生物原料时,面临着产品"能量密度"、生物质原料是否为废料或非人畜食物来源,以及如何充分利用现有设施等问题。采用加氢转化和加热裂化或催化裂化工艺,可在石油炼制过程中以动物脂肪和植物油为原料,生产可与石油相容的生物燃料,同时使炼厂降低碳排放。应实现生物炼制能力与石油炼制操作的一体化,从而使生物炼制业和传统石油炼制业都实现可持续发展。  相似文献   

4.
第二代生物乙醇以生物质为原料,包括纤维素乙醇和纤维素生物汽油两种产品。目前已建有示范装置和/或工业装置的纤维素乙醇生产技术包括硫酸/酶水解-发酵技术、硫酸水解-发酵技术、酸水解-发酵-酯化-加氢技术、酶水解-发酵技术。业内专家认为,用酶替代硫酸水解是纤维素乙醇生产的发展方向。目前已经和准备进行示范装置试验的纤维素生物汽油生产技术包括快速热解-加氢改质技术和BioForming技术。第二代生物柴油主要以动植物油脂为原料,通过催化加氢生产非脂肪酸甲酯生物柴油,它是理想的优质柴油调合组分。生产第二代生物柴油的加氢技术包括加氢脱氧、回收丙烷和其他轻烃气体、脱水、异构化和裂化、蒸馏等5个步骤,主要有NExBTL可再生柴油生产技术、Ecofining绿色柴油生产技术、Haldor Topsoe可再生柴油生产技术、EERC可再生柴油生产技术。第三代生物燃料有两种:一种是以海藻油为原料生产乙醇、丁醇、喷气燃料和柴油,海藻培养(生长)和萃取海藻油是核心步骤,目前尚处于初期阶段;另一种是以生物质原料通过气化合成生产汽油、喷气燃料和柴油,重点是开发生物质气化技术,降低生产成本。我国应借鉴国外发展第二代和第三代生物燃料的做法,把技术开发工作做深做细做透,搞清楚原料的供应情况;目前我国生物柴油主要采用酯交换法生产脂肪酸甲酯,应考虑开发和采用加氢法生产第二代生物柴油,并努力扩大除麻风果油以外的原料来源;同时应加大海藻生物燃料和生物质气化合成生物燃料的开发力度。  相似文献   

5.
秸秆、动植物油脂、微藻等生物质原料可以生产液体运输燃料,生物燃料的化学成分包括醇、酯、烃三类。燃料乙醇主要替代汽油,受到各国重视,其中纤维素乙醇技术发展较快。脂肪酸甲酯是第一代生物柴油的主要成分,价格主要受油脂原料价格的影响,由于和柴油相容性差,低温流动性不好,将逐渐被加氢生产的第二代生物柴油取代。相比醇、酯等含氧燃料,烃类生物燃料在使用性能上有很多优势。有多条技术路线可以生产烃类燃料,其中油脂加氢制喷气燃料已接近商业应用,热解油加氢可将木质生物质原料中的"木质素"组分转化为生物油,大型快速热解工厂可以和热电联产装置组成联合系统,从而提高工厂综合热效率,降低生物燃料生产成本。因此,快速热解生产汽柴油将成为主要的生物燃料生产路线。生物质与煤共气化技术通过提高气化温度,不仅可以提高生物质气化效率,减少焦油的生成,还可以解决生物质供给的季节性问题,为生物质的高效利用提供了一条新的技术途径。微藻高压液化生产柴油是最具发展潜力的第三代生物燃料技术,我国需要加强微藻养殖及加工技术攻关。  相似文献   

6.
为深入了解生物质热解生物油的特性,对生物质的主要成分纤维素热解生物油的析出和演变特性进行研究。在固定床上研究纤维素在不同温度(280~550℃)下的快速与慢速热解以及不同气相停留时间对纤维素生物油特性与组成的影响。研究表明,纤维素快速热解生物油由左旋葡聚糖及大量脱水糖组成,还有少量呋喃衍生物(如糠醛、5-羟甲基糠醛等)。慢速热解时产生的脱水糖种类较少,但小分子化合物种类更多。随着气相停留时间的缩短,液体产物中左旋葡聚糖含量逐渐升高,酸、醛等小分子消失。  相似文献   

7.
油棕废弃物及生物质三组分的热解动力学研究   总被引:4,自引:0,他引:4  
主要利用热重分析仪(TG)对油棕废弃物和生物质的三组分(半纤维素,纤维素和木质素)的热解特性进行了系统研究,对比分析了热解特性,计算了其热解动力学参数,并研究了升温速率对生物质热解特性的影响。研究发现半纤维素和纤维素易于热降解而木质素难于热解;油棕废弃物的热解可以化分为:干燥、半纤维素热解、纤维素热解和木质素热解4个阶段;生物质的热解反应主要是一级反应,油棕废弃物的活化能很低,约为60kJ/kg;升温速率对生物质影响很大,随升温速率加快,生物质热解温度升高,热解速率降低。  相似文献   

8.
由于生物质能源具有储量大、分布广、可再生等特点而被人们开发为煤、石油、天然气等化石燃料的替代能源,将木质纤维素转化为燃料乙醇是生物质能源开发利用的一个重要方向。纤维素、半纤维素和木质素是组成木质纤维素的主要成分,它们之间通过共价和非共价键结合形成致密的结构,阻碍了酶对木质纤维素的降解,因此在将木质纤维素酶解发酵之前必须进行预处理。本文综述了生物法、物理法、化学法和物理化学法四大类预处理技术及其相关原理并对木质纤维素预处理技术发展前景作了展望。  相似文献   

9.
钾元素对纤维素热解特性的影响   总被引:2,自引:0,他引:2  
武宏香  李海滨  赵增立 《太阳能学报》2010,31(12):1537-1542
为考察钾元素及其存在形态对生物质热解特性的影响,实验用不同浓度的KAc和KCl溶液浸渍微晶纤维素,其热重结果表明,钾能促进纤维素低温分解、降低热解反应速率并使固体焦产率增加,能降低纤维素热解的表观活化能,活化能随钾添加量的增加而降低。通过对KCl、KAc浸渍纤维素的热重-红外(TG-FTIR)分析结果表明,钾能使纤维素热解向低小分子产物转化,但其作用能力受到添加盐种类的影响,KAc对热解反应温度、产物的影响显著大于KCl,使纤维素热解分为两段,而KCl的作用能力易受到添加量的限制。生物质中以有机结合态存在的钾对热解的过程的影响大于以无机态存在的钾。  相似文献   

10.
我国生物质热解特性及工艺研究进展   总被引:3,自引:0,他引:3  
我国秸秆和畜禽粪便等生物质原料的产量非常丰富,用这些量大而来源广泛的生物质原料热解制取生物炭,可用于燃料,替代化石能源,还可用作吸附剂以及土壤改良剂,用途广泛。本文从原料的种类,热解技术,工艺过程,以及影响因素等四方面,对生物质热解特性以及制取生物炭工艺研究现状进行梳理、分析与研究。依据现阶段的研究结果,阐明未来应在秸秆原料基础特性、秸秆热解特性、优化不同地域间的秸秆热解工艺以及畜禽粪便热解制炭等方面着手进行深入研究。  相似文献   

11.
程序 《中外能源》2014,(4):16-22
液态和气态生物燃料一直是生物能源研发的"重中之重"。纤维素乙醇这种所谓的"第二代生物燃料"的开发热持续了近10年,但始终未能突破商业化生产的技术、经济瓶颈。物料预处理成本和酶成本过高,是木质纤维素乙醇产业化的两大根本性障碍,同时还存在着其他不确定性。而基于热化学平台和糖平台的新型液体生物燃料正在走上世界能源舞台。近年来生物质气化-合成油、生物质裂解提质油、EL类生物燃油、生物MTG油、CBGTL油、藻类油/燃气、生物质气化-合成天然气等各种新型的生物燃料不断涌现,而且研发和产业化速度很快,若干品种的研发已处于产业化的前夜,有望在今后2~4年内实现商业化。它们不但符合"先进生物燃料"关于碳减排的要求,而且还是所谓的"可直接使用生物燃料",即能以任何比例与常规汽柴油调合,或完全单独用于现有的发动机,无需像燃料乙醇那样必须有专用的储运设施。液态和气态生物能源正在迎接研发和产业化的第二波浪潮,中国在其中也占有了一席之地。在这样的大背景下,上述新型生物燃料的主要原料木质纤维素类物料的重要性将愈发凸显。  相似文献   

12.
正烃类生物燃料加工技术中一些技术的突破可能加快产业化进程。专家预测,以烃类为主要成分的第二代生物柴油取代以脂肪酸甲酯为主要成分的第一代生物柴油是大势所趋。有多条技术路线以生物质为原料生产的烃类燃料可与传统燃料以任意比例调配。油脂加氢异构生产可再生柴油和喷气燃料将首先实现商业化,气化、热解转化木质生物质生产可再生柴油的技术已接近商用或者处于示范阶段,热解油加氢制烃燃料和CBGTL将成为主要的生物燃料生产路线。  相似文献   

13.
生物质热解燃料的生产   总被引:7,自引:0,他引:7  
彭卫民  吴庆余 《新能源》2000,22(11):39-44
利用热解及其相关技术可将生物质转化成焦炭、生物油和合成气。本文重点介绍了生物质热解技术的研究概况,简介了利用生物质热解生产燃料的优点。指出:利用湖泊等自然水体中的浮游藻类做热解材料,在解决水体环境污染方面具有很好的社会效益和经济效益。  相似文献   

14.
木质纤维素生物质生产乙醇的预处理技术   总被引:11,自引:0,他引:11  
木质纤维素生物质经过预处理后,原料的内孔面积增大,纤维素的结晶性降低,并且半纤维素和木质素被去除.预处理后的生物质容易进行酶水解生产燃料乙醇。总结了近些年来的预处理技术,如物理法、化学法和生物法。  相似文献   

15.
交通运输用液态和气态生物燃料一直是国内外期望用以替代化石燃料的研发热点,作为"第二代生物燃料"的纤维素乙醇曾被寄予厚望,然而对其的研发热虽已持续近10年,但迄今未能正式商业化。在这一背景下,一方面是某些纤维素乙醇企业探索"多产品联产"以求生存;另一方面,国际上研发的重点正在向基于热化学转化途径的新型液体生物燃料转变。包括生物质气化-合成油、生物裂解-提质油、生物MTG油、CBGTL油等在内的"先进生物燃料"正在走上历史舞台,它们不但符合关于碳减排和洁净燃料的标准,而且还是可"直接使用"(drop-in)的燃料,即能以任何比例与常规汽柴油掺混,或单独用于现有的发动机,比生物乙醇具有更广阔的市场。更重要的是,适合制生物合成油的原料范畴比生物乙醇大幅拓宽,木质类废弃物乃至有机垃圾等均可用作原料,同时还能充分利用现有石油炼制设备。当前生物合成油的开发已经处于商业化的前夜。在激烈的竞争中,中国个别民企虽已占有一席之地,但在国家层面应尽快将生物质热化学转化置于生物能源研发的真正战略制高点。  相似文献   

16.
摘要:在管式炉上进行了预处理纤维素(CaFA纤维素)的热解实验,研究了预处理对纤维素热解特性的影响。样品红外压片分析显示预处理影响了纤维素组成单元吡喃环的稳定性,且CaFA纤维素出现了明显的羧酸根官能团振动。热解实验表明:预处理使得纤维素的半焦和气体产率增加,生物油产率下降。CaFA纤维素最大生物油产率为0.496(g/g),相比未处理纤维素最大生物油产率降低19.1%。CaFA纤维素的气体产物中,CO含量减少,而CO2、CH4和H2含量增加,一定程度上提高了热解气相产物中的氧含量。GC-MS分析表明预处理对纤维素生物油组分具有明显的选择性,CaFA纤维素生物油中,大分子糖类及其衍生物的相对含量显著减少,而小分子酮类物质明显增加。  相似文献   

17.
生物质种类不同,转化为运输燃料的途径也是多种多样,生命周期排放的温室气体和能耗也不相同。总结对比主要生物质转化途径的全生命周期分析(LCA)结果,有助于明确需要进一步改进的技术难题和方向。生物质转化为醇类燃料时,使用E85比使用传统汽油的碳排放明显下降,纤维素生化转化途径排放的二氧化碳当量值约为传统汽油的0.2~0.7倍,热化学途径约为传统汽油的0.6~0.9倍,玉米干法为传统汽油的0.8~1倍。油脂类生物质转化为酯类燃料时,生物柴油减排温室气体的效果,动物油脂地沟油、棕榈油豆油、椰子油菜籽油。动物油脂、地沟油生产生物柴油可减排温室气体70%~90%,以植物为原料的生物柴油可减排10%~90%。生物质转化为烃类燃料时,菜籽油基喷气燃料可减排温室气体13%~55%,F-T合成油比油脂加氢具有更好的减排效果,BTL通常可减排80%以上的温室气体,CBTL的减排效果与掺入生物质的比例有关,热解汽柴油的温室气体减排率为58%~70%。对于微藻生物燃料工艺过程,在微藻产率和含油量不太低的情况下,池子系统的温室气体排放低于石油柴油。  相似文献   

18.
生物质中的碱及碱土金属元素对生物质的热转化过程有着重要的影响。文章通过对松木进行酸、碱预处理向生物质结构中引入或脱除有机钠元素。首先利用热重分析实验,研究了不同预处理方式下生物质热解过程的动力学特性;进而,利用固定床反应平台研究了有机钠元素对生物质热解和CO2辅助气化过程中合成气产量的影响。研究结果表明:有机钠元素在热解过程中会形成BM-Na结构并引起热解过程合成气产量的大幅降低;在CO2辅助气化过程中,热解过程产生的BM-Na结构可以作为气化反应的活性位点,加速Boudouard反应速率,并导致合成气产量的大幅增加。  相似文献   

19.
以松木锯末、花生壳、大豆秸秆等几种典型生物质为试验原料,在流化床反应器内进行了热解试验,分别考察了热解反应温度、停留时间、进料量对生物质热解产物(油、气、炭)产率的影响,以及这几种生物质原料热解产油率的最佳工艺条件.运用GC/MS方法确认了生物质热解油中的40种化合物,生物质热解油的GC/MS法分析结果为其在化工和能源方面的综合利用提供了有价值的数据.  相似文献   

20.
出于降低对石油产品的依赖以及减少污染的需要,全球燃料乙醇的生产量正持续增长。同时,其原料的开发步伐也在加快。谷物或甘蔗是全球乙醇生产所用的主要原料。分析认为,谷物或甘蔗未来增长潜力有限,而含有木质纤维素的各种生物质原料成为生产乙醇所需的替代来源.其开发日益加快。木质纤维素材料存在于谷物和生活固体废弃物之中,木质纤维素材料因其具有复杂的聚合结构,要转化为化学产品颇为困难。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号