首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, 5-s long sequences of full-spectrum electroencephalogram (EEG) recordings were used for classifying alert versus drowsy states in an arbitrary subject. EEG signals were obtained from 30 healthy subjects and the results were classified using a wavelet-based neural network. The wavelet-based neural network model, employing the multilayer perceptron (MLP), was used for the classification of EEG signals. A multilayer perceptron neural network (MLPNN) trained with the Levenberg–Marquardt algorithm was used to discriminate the alertness level of the subject. In order to determine the MLPNN inputs, spectral analysis of EEG signals was performed using the discrete wavelet transform (DWT) technique. The MLPNN was trained, cross-validated, and tested with training, cross-validation, and testing sets, respectively. The correct classification rate was 93.3% alert, 96.6% drowsy, and 90% sleep. The classification results showed that the MLPNN trained with the Levenberg–Marquardt algorithm was effective for discriminating the vigilance state of the subject.  相似文献   

2.
This paper presents the application of adaptive neuro-fuzzy inference system (ANFIS) model for estimation of vigilance level by using electroencephalogram (EEG) signals recorded during transition from wakefulness to sleep. The developed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. This study comprises of three stages. In the first stage, three types of EEG signals (alert signal, drowsy signal and sleep signal) were obtained from 30 healthy subjects. In the second stage, for feature extraction, obtained EEG signals were separated to its sub-bands using discrete wavelet transform (DWT). Then, entropy of each sub-band was calculated using Shannon entropy algorithm. In the third stage, the ANFIS was trained with the back-propagation gradient descent method in combination with least squares method. The extracted features of three types of EEG signals were used as input patterns of the three ANFIS classifiers. In order to improve estimation accuracy, the fourth ANFIS classifier (combining ANFIS) was trained using the outputs of the three ANFIS classifiers as input data. The performance of the ANFIS model was tested using the EEG data obtained from 12 healthy subjects that have not been used for the training. The results confirmed that the developed ANFIS classifier has potential for estimation of vigilance level by using EEG signals.  相似文献   

3.
We developed a new method for estimation of vigilance level by using both EEG and EMG signals recorded during transition from wakefulness to sleep. Previous studies used only EEG signals for estimating the vigilance levels. In this study, it was aimed to estimate vigilance level by using both EEG and EMG signals for increasing the accuracy of the estimation rate. In our work, EEG and EMG signals were obtained from 30 subjects. In data preparation stage, EEG signals were separated to its subbands using wavelet transform for efficient discrimination, and chin EMG was used to verify and eliminate the movement artifacts. The changes in EEG and EMG were diagnosed while transition from wakefulness to sleep by using developed artificial neural network (ANN). Training and testing data sets consist of the subbanded components of EEG and power density of EMG signals were applied to the ANN for training and testing the system which gives three situations for the vigilance level of the subject: awake, drowsy, and sleep. The accuracy of estimation was about 98–99% while the accuracy of the previous study, which uses only EEG, was 95–96%.  相似文献   

4.
分析了小波多分辨分析特征提取的特点,提出了八通道脑电信号癫痫波自动检测的方法。每个通道的信号利用小波变换进行五层分解,以提取小波变换各子带的小波系数和信号偏差组成特征值计算自适应阈值,并将其应用到关键子带,提取出信号中的癫痫波。研究的重点是对脑电信号进行分解选择合适的小波;确定适当的分解层次以及自适应阈值的计算。实验结果表明,方法能够为癫痫脑电的特征提取提供快速而有效的手段。  相似文献   

5.
Over the past two decades, wavelet theory has been used for the processing of biomedical signals for feature extraction, compression and de-noising applications. However the question as to which wavelet family is the most suitable for analysis of non-stationary bio-signals is still prevalent among researchers. This paper attempts to find the most useful wavelet function among the existing members of the wavelet families for electroencephalogram signal (EEG) analysis. The EEGs considered for this study belong to both normal as well as abnormal signals like epileptic EEG. Important features such as energy, entropy and standard deviation at different sub-bands were computed using the wavelet functions—Haar, Daubechies (orders 2-10), Coiflets (orders 1-10), and Biorthogonal (orders 1.1, 2.4, 3.5, and 4.4). Feature vectors were used to model and train the Probabilistic Neural Network (PNN) and the classification accuracies were evaluated for each case. The results obtained from PNN classifier were compared with Support Vector Machine (SVM) classifier. From the statistical analysis, it was found that Coiflets 1 is the most suitable candidate among the wavelet families considered in this study for accurate classification of the EEG signals. In this work, we have attempted to improve the computing efficiency as it selects the most suitable wavelet function that can be used for EEG signal processing efficiently and accurately with lesser computational time.  相似文献   

6.
Sleep study is very important in the health since sleep disorders affect the productivity of individuals. One of the important topics in sleep research is the classification of sleep stages using the electroencephalogram (EEG) signal. Electrical activities of brain are measured by EEG signal in the laboratory. In real-world environments, EEG signal is also used in portable monitoring devices to analyze sleep. In this study, we propose an efficient method for classification of sleep stages. EEG signals are examined by a new model from autoregressive (AR) family, namely logistic smooth transition autoregressive (LSTAR) to study sleep process. In contrast to the AR model, LSTAR is a non-linear one; therefore, it is suitable for modeling non-linear signals such as EEG. In the current research, at first, each 30-second epoch of EEG signal is decomposed into the time-frequency sub-bands using the double-density dual-tree discrete wavelet transform (D3TDWT). In the second step, LSTAR model is used for feature extraction from each sub-band. Next, the dimension of feature vector is reduced by tensor locality preserving projection (tensor LPP) method, and then the obtained features are given to classifier to determine the stage of each epoch based on the number of considered classes. After classifying sleep stages, some misclassified epochs can be corrected according to the smoothing rule. We consider different classifiers and evaluate their performance. The results indicate the efficiency of the proposed method in comparison with the recently introduced methods in terms of accuracy and Kappa coefficient.  相似文献   

7.
Epileptic seizures are manifestations of epilepsy. Careful analyses of the electroencephalograph (EEG) records can provide valuable insight and improved understanding of the mechanisms causing epileptic disorders. The detection of epileptiform discharges in the EEG is an important component in the diagnosis of epilepsy. As EEG signals are non-stationary, the conventional method of frequency analysis is not highly successful in diagnostic classification. This paper deals with a novel method of analysis of EEG signals using wavelet transform and classification using artificial neural network (ANN) and logistic regression (LR). Wavelet transform is particularly effective for representing various aspects of non-stationary signals such as trends, discontinuities and repeated patterns where other signal processing approaches fail or are not as effective. Through wavelet decomposition of the EEG records, transient features are accurately captured and localized in both time and frequency context. In epileptic seizure classification we used lifting-based discrete wavelet transform (LBDWT) as a preprocessing method to increase the computational speed. The proposed algorithm reduces the computational load of those algorithms that were based on classical wavelet transform (CWT). In this study, we introduce two fundamentally different approaches for designing classification models (classifiers) the traditional statistical method based on logistic regression and the emerging computationally powerful techniques based on ANN. Logistic regression as well as multilayer perceptron neural network (MLPNN) based classifiers were developed and compared in relation to their accuracy in classification of EEG signals. In these methods we used LBDWT coefficients of EEG signals as an input to classification system with two discrete outputs: epileptic seizure or non-epileptic seizure. By identifying features in the signal we want to provide an automatic system that will support a physician in the diagnosing process. By applying LBDWT in connection with MLPNN, we obtained novel and reliable classifier architecture. The comparisons between the developed classifiers were primarily based on analysis of the receiver operating characteristic (ROC) curves as well as a number of scalar performance measures pertaining to the classification. The MLPNN based classifier outperformed the LR based counterpart. Within the same group, the MLPNN based classifier was more accurate than the LR based classifier.  相似文献   

8.
Mixture of experts (ME) is modular neural network architecture for supervised learning. A double-loop Expectation-Maximization (EM) algorithm has been introduced to the ME network structure for detection of epileptic seizure. The detection of epileptiform discharges in the EEG is an important component in the diagnosis of epilepsy. EEG signals were decomposed into the frequency sub-bands using discrete wavelet transform (DWT). Then these sub-band frequencies were used as an input to a ME network with two discrete outputs: normal and epileptic. In order to improve accuracy, the outputs of expert networks were combined according to a set of local weights called the “gating function”. The invariant transformations of the ME probability density functions include the permutations of the expert labels and the translations of the parameters in the gating functions. The performance of the proposed model was evaluated in terms of classification accuracies and the results confirmed that the proposed ME network structure has some potential in detecting epileptic seizures. The ME network structure achieved accuracy rates which were higher than that of the stand-alone neural network model.  相似文献   

9.
现有癫痫发作预测方法存在精度较低、错误报警率较高、癫痫患者睡眠脑电特异性、致痫灶位置和类型不同导致脑电信号存在差异的问题.文中提出基于深度神经网络的个性化睡眠癫痫发作预测方法,帮助医生和患者采取及时有效的治疗措施,降低患者患并发症和猝死的概率.对原始脑电信号滤波和分段以去除噪声,保证短时间内触发警报,利用离散小波变换分解信号并提取统计特征表征脑电信号时频特征.再应用双向长短期记忆网络挖掘最具鉴别能力的特征并结合留一法分类,经过决策过程优化得到预测结果.在不同频带限制条件下的实验表明,与睡眠癫痫相关的δ频带信号是影响发作预测性能的重要因素.相比现有睡眠癫痫预测方法,文中方法性能较优.  相似文献   

10.
In this paper, a new method for automatic sleep stage classification based on time-frequency image (TFI) of electroencephalogram (EEG) signals is proposed. Automatic classification of sleep stages is an important part for diagnosis and treatment of sleep disorders. The smoothed pseudo Wigner–Ville distribution (SPWVD) based time-frequency representation (TFR) of EEG signal has been used to obtain the time-frequency image (TFI). The segmentation of TFI has been performed based on the frequency-bands of the rhythms of EEG signals. The features derived from the histogram of segmented TFI have been used as an input feature set to multiclass least squares support vector machines (MC-LS-SVM) together with the radial basis function (RBF), Mexican hat wavelet, and Morlet wavelet kernel functions for automatic classification of sleep stages from EEG signals. The experimental results are presented to show the effectiveness of the proposed method for classification of sleep stages from EEG signals.  相似文献   

11.
针对基于三维视觉指导的运动想象脑机接口多通道冗余信息较多、分类准确率差的问题,提出了一种基于小波包分解(WPD)—共空间滤波(CSP)—自适应差分进化(ADE)的模式脑电信号特征提取与选择分类方法。首先,对采集的多通道运动想象脑电信号进行WPD变化,划分出精细的子频带;然后,分别将WPD变换后的每个子空间作为CSP的输入,得到对应的特征向量;最后,使用ADE算法对特征向量进行选择,选择出用于分类的最佳特征子集。采用WPD-CSP-ADE模式进行特征提取与选择,较经典的WPD-CSP方法在分类正确率、特征个数方面有着更好的表现。同时,所提算法分类性能明显优于遗传算法、粒子群算法。实验结果表明,WPD-CSP-ADE方法能够有效地提高分类正确率,同时减少了用于分类的特征个数。  相似文献   

12.
Abstract: In this paper, the probabilistic neural network is presented for classification of electroencephalogram (EEG) signals. Decision making is performed in two stages: feature extraction by wavelet transform and classification using the classifiers trained on the extracted features. The purpose is to determine an optimum classification scheme for this problem and also to infer clues about the extracted features. The present research demonstrates that the wavelet coefficients obtained by the wavelet transform are features which represent the EEG signals well. The conclusions indicate that the probabilistic neural network trained on the wavelet coefficients achieves high classification accuracies (the total classification accuracy is 97.63%).  相似文献   

13.
Identifying seizure patterns in complex electroencephalography (EEG) through visual inspection is often challenging, time-consuming and prone to errors. These problems have motivated the development of various automated seizure detection systems that can aid neurophysiologists in accurate diagnosis of epilepsy. The present study is focused on the development of a robust automated system for classification against low levels of supervised training. EEG data from two different repositories are considered for analysis and validation of the proposed system. The signals are decomposed into time-frequency sub-bands till sixth level using dual-tree complex wavelet transform (DTCWT). All details and last approximation coefficients are used to calculate features viz. energy, standard deviation, root-mean-square, Shannon entropy, mean values and maximum peaks. These feature sets are passed through a general regression neural network (GRNN) for classification with K-fold cross-validation scheme under varying train-to-test ratios. The current model yields ceiling level classification performance (accuracy, sensitivity & specificity) in all combinations of datasets (ictal vs non-ictal) in less than 0.028 s. The proposed scheme will not only maximize hit-rate and correct rejection rate but also will aid neurophysiologists in the fast and accurate diagnosis of seizure onset.  相似文献   

14.
Several studies have been conducted for automatic classification of sleep stages to ease time-consuming manual scoring process that can involve a high degree of experience and subjectivity. But none of them has found a practical usage in medical area so far because of their under acceptable success rates. In this study, a different classification scheme is proposed to increase the success rate in automatic sleep stage scoring in which sleep stages were classified as Awake, Non-REM1, Non-REM2, Non-REM3 and REM stages. Using EEG, EMG and EOG recordings of five healthy subjects, a modified version of sequential feature selection method was applied to the sleep epochs in class by class basis and different artificial neural network (ANN) architectures were trained for each class. That is to say, sleep stages were classified with five ANN architectures each of which uses different features and different network parameters for classification. The highest classification accuracy was obtained for REM sleep as 95.13 % in addition to the lowest classification accuracy of 86.42 % for Non-REM3 sleep. The overall accuracy, on the other hand, was recorded as 90.93 %, which is a comparatively good result when the other studies using all stages are taken into account.  相似文献   

15.
Various studies show that drowsiness reduces driver alertness and can significantly affect driver performance. In this paper, we investigate the effect of drowsiness on the interaction with the in-vehicle infotainment system (IVIS) while driving. The motivation was to investigate whether a specific type of user interface can provide better performance and lower distraction when the driver is drowsy. The users were asked to navigate a vehicle in a driving simulator and simultaneously perform a set of tasks of varying complexity first when they were rested and alert and then when they were drowsy, after 7 h without sleep. A hierarchical, list-based menu was presented using a stereoscopic head-up display (HUD) and a head-down display (HDD). Based on the results, no general and statistically significant connection was found between drowsiness and driving performance. Surprisingly, the secondary task performance was even better when participants were drowsy, which was evident from the faster task completion times. This could be attributed to extra efforts invested in executing tasks as a result of the participants being aware of their drowsiness. However, when comparing the participants’ performance using HUD and HDD displays, the results showed that using HUD introduces less mental fatigue than using HDD but only in rested and alert condition. No significant difference between the displays was found in the drowsy state.  相似文献   

16.
为了提高脑思维任务分类精度,提出了一种基于小波包分解和多分类器投票组合的运动想象任务分类方法。该方法利用小波包分解对经过预处理的脑电信号进行分解,提取所有频带上的相对小波包能量特征;根据不同脑思维任务下左右半脑各通道间的差异性对C3、C4两通道求取特定频带上的小波包系数的L-2范数作为特征;采用基于投票策略的组合分类器对两种联合特征进行分类,得到了92.85%的识别精度。实验结果表明,联合特征向量较好地反映了左右手运动想象脑电信号的事件相关去同步(ERD)和事件相关同步(ERS)的本质特性;组合分类器识别效果优于单一分类器。  相似文献   

17.
Alcoholism is a critical disorder related to the central nervous system, caused due to repeated and excessive consumption of alcohol. The electroencephalogram (EEG) signals are used to depict brain activities. It can also be employed for diagnosis of subjects consuming excessive alcohol. In this study, we have developed an automated system for the classification of alcoholic and normal EEG signals using a recently designed duration-bandwidth product (DBP), optimized three-band orthogonal wavelet filter bank (TBOWFB), and log-energy (LE). First, we obtain sub-bands (SBs) of EEG signals using the TBOWFB. Then, we use logarithms of the energies of the SBs as the discriminating features which are fed to the least square support vector machine (LS-SVM) for the discrimination of normal and alcoholic EEG signals. We have achieved a classification accuracy (CA) of 97.08%, with ten-fold cross validation strategy. The proposed model presents a promising performance, and therefore it can be used in a practical setup to assist the medical professionals in the diagnosis of alcoholism using EEG signals automatically.  相似文献   

18.
Electroencephalogram (EEG) recordings often experience interference by different kinds of noise, including white, muscle and baseline, severely limiting its utility. Artificial neural networks (ANNs) are effective and powerful tools for removing interference from EEGs. Several methods have been developed, but ANNs appear to be the most effective for reducing muscle and baseline contamination, especially when the contamination is greater in amplitude than the brain signal. An ANN as a filter for EEG recordings is proposed in this paper, developing a novel framework for investigating and comparing the relative performance of an ANN incorporating real EEG recordings. This method is based on a growing ANN that optimized the number of nodes in the hidden layer and the coefficient matrices, which are optimized by the simultaneous perturbation method. The ANN improves the results obtained with the conventional EEG filtering techniques: wavelet, singular value decomposition, principal component analysis, adaptive filtering and independent components analysis. The system has been evaluated within a wide range of EEG signals. The present study introduces a new method of reducing all EEG interference signals in one step with low EEG distortion and high noise reduction.  相似文献   

19.
In this work, an efficient automated new approach for sleep stage identification based on the new standard of the American academy of sleep medicine (AASM) is presented. The propose approach employs time-frequency analysis and entropy measures for feature extraction from a single electroencephalograph (EEG) channel. Three time-frequency techniques were deployed for the analysis of the EEG signal: Choi-Williams distribution (CWD), continuous wavelet transform (CWT), and Hilbert-Huang Transform (HHT). Polysomnographic recordings from sixteen subjects were used in this study and features were extracted from the time-frequency representation of the EEG signal using Renyi's entropy. The classification of the extracted features was done using random forest classifier. The performance of the new approach was tested by evaluating the accuracy and the kappa coefficient for the three time-frequency distributions: CWD, CWT, and HHT. The CWT time-frequency distribution outperformed the other two distributions and showed excellent performance with an accuracy of 0.83 and a kappa coefficient of 0.76.  相似文献   

20.

The aim of the paper is to automatically select the optimal EEG rhythm/channel combinations capable of classifying human alertness states. Four alertness states were considered, namely ‘engaged’, ‘calm’, ‘drowsy’ and ‘asleep’. The features used in the automatic selection are the energies associated with the conventional rhythms, \(\delta , \theta , \alpha , \beta\) and \(\gamma\), extracted from overlapping windows of the different EEG channels. The selection process consists of two stages. In the first stage, the optimal brain regions, represented by sets of EEG channels, are selected using a simple search technique based on support vector machine (SVM), extreme learning machine (ELM) and LDA classifiers. In the second stage, a fuzzy rule-based alertness classification system (FRBACS) is used to identify, from the previously selected EEG channels, the optimal features and their supports. The IF–THEN rules used in FRBACS are constructed using a novel differential evolution-based search algorithm particularly designed for this task. Each alertness state is represented by a set of IF–THEN rules whose antecedent parts contain EEG rhythm/channel combination. The selected spatio-frequency features were found to be good indicators of the different alertness states, as judged by the classification performance of the FRBACS that was found to be comparable to those of the SVM, ELM and LDA classifiers. Moreover, the proposed classification system has the advantage of revealing simple and easy to interpret decision rules associated with each of the alertness states.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号