首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A uniform nanolayer of europium-doped Gd2O3 was coated on the surface of preformed submicron silica spheres by a Pechini sol-gel process. The resulted SiO2 @ Gd2O3:Eu3+ core-shell structured phosphors were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays. The XRD results show that the Gd2O3:Eu3+ layers start to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. The core-shell phosphors possess perfect spherical shape with narrow size distribution (average size: 640 nm) and non-agglomeration. The thickness of the Gd2O3:Eu3+ shells on the SiO2 cores can be adjusted by changing the deposition cycles (70 nm for three deposition cycles). Under short UV excitation, the obtained SiO2@Gd2O3:Eu3+ particles show a strong red emission with 5D0-7F2 (610 nm) of Eu3+ as the most prominent group. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.  相似文献   

2.
Atomic layer chemical vapor deposition (ALCVD) of titanium silicate nanofilms using a precursor combination of tetrakis-diethylamido-titanium (Ti(N(C2H5)2)4) and tetra-n-butyl-orthosilicate (Si(O(n)Bu)4) was studied for high dielectric gate oxides. ALCVD temperature window in our study was 170-210 degrees C with a growth rate of 0.8 A/cycle. We investigated the effects of deposition conditions, such as deposition temperature, pulse time of precursor and purge injection, on the titanium silicate nanofilm growth. The saturated composition of Ti/(Ti+ Si) ratio was 0.6 and impurity concentrations were less than 1 atomic %. Dielectric constant (k) of the as-deposited titanium silicate film was approximately 10.5. Hysteresis in capacitance-voltage (C-V) measurements was less than 0.35 V before and after annealing. The leakage current density of the as-deposited and 400 degrees C annealed film was 1.4 x 10(-4) A/cm2, 4.2 x 10(-4) A/cm2, respectively, at a bias of -1 V.  相似文献   

3.
Chen HC  Lee CC  Jaing CC  Shiao MH  Lu CJ  Shieu FS 《Applied optics》2006,45(9):1979-1984
Titanium oxide thin films were deposited by electron-beam evaporation with ion-beam-assisted deposition. The effect of the substrate temperature and annealing temperature on the columnar microstructure and recrystallization of titanium oxide was studied. The values of the refractive index varied from 2.26 to 2.4, indicating that the different substrate temperatures affected the film density. X-ray diffraction revealed that all films were amorphous as deposited. At annealing temperatures from 100 degrees C to 300 degrees C, only the anatase phase was formed. As the substrate temperature increased from 150 degrees C to 200 degrees C to 250 degrees C, the recrystallization temperature fell from 300 degrees C through 250 degrees C to 200 degrees C. Changing the substrate temperature resulted in the formation of various types of columnar microstructure, as determined by scanning-electron microscopy. Different columnar structures resulted in different surface morphologies, as measured by atomic-force microscopy.  相似文献   

4.
The luminescent complex terbium (III)-trimesic acid (TMA)-1,10-phenanthroline (phen) nanorod was synthesized in the polyvinylpyrrolidone (PVP) matrix by a co-precipitation method. The chemical formula of the synthesized complex was speculated to be PVP/TbL(phen)0.5 x 7H2O by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), elemental analysis and Fourier-transform infrared spectroscopy (FTIR). The X-ray diffraction pattern (XRD) of PVP/TbL(phen)0.5 x 7H2O indicated that it was a crystalline complex. The transmission electron microscopy (TEM) result showed that the complex was nanorods with diameters of about 80-100 nm. The thermogravimetric curve (TGA) analysis exhibited that the complex has good stability below 400 degrees C. UV-Vis diffuse reflectance spectra showed that there is a maximum absorption at 300 nm. The photoluminescence analyses (PLA) showed that the synthesized complex emitted the characteristic green fluorescence of Tb (III) ions under ultraviolet light excitation. The emission peaks of PVP/TbL(phen)0.5 x 7H2O at 488, 542, 581, and 618 nm using 278 nm as exciting wavelength can be assigned to the 5D4 --> 7F6, 5D4 --> 7F5, 5D4 --> 7F4, and 5D4 --> 7F3 electron transitions of the Tb3+ ions, respectively.  相似文献   

5.
Nano-columnar TiO2 grains are prepared and immobilized by chemical vapor deposition using TiCl4, H2 and O2 at low temperature. The structure of TiO2 is analyzed by X-ray diffraction (XRD), the morphology is observed by scanning electron microscopy (SEM) and the adhesion is estimated by measuring the critical load in scratch test. Results show that the structure of TiO2 films depend on the deposition temperature changing from amorphous, anatase, rutile, and both anatase and rutile phases as prepared at temperatures of 200, 300, 400 and 500 degrees C, respectively. The nano-columnar TiO2 grains are formed in both rutile and anatase phases, while it could be only rutile phase by increasing TiCl4 flow rate. The morphologies of TiO2 changes from smooth to nano-columnar grains as the deposition temperature increased from 200 to 400 degrees C. Excellent adhesion strength of crystalline TiO2 was obtained and it could be improved by increasing the TiCl4 flow rate in range of 0.3-0.6 sccm, where the critical load of TiO2 increases from 17 to 21 N.  相似文献   

6.
The physicochemical and electrical properties of Pd-deposited WO3 thin films were investigated as a function of Pd thickness, annealing temperature, and operating temperature for application as a hydrogen gas sensor. WO3 thin films were deposited on an insulating material using a thermal evaporator. X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to evaluate the crystal structure, microstructure, surface roughness, and chemical property of the films, respectively. The deposited films grew into polycrystalline WO3 with a rhombohedral structure after annealing at 500 degrees C. Adding Pd had no effect on the crystallinity, but suppressed the growth of WO3 grains. The Pd was scattered as isolated small spherical particles of PdO2 on the WO3 thin film after annealing at 500 degrees C, while it agglomerated as irregular large particles or diffused into the WO3 after annealing at 600 degrees C. PdO2 reduction under H2 and reoxidation under air were dependent on both the Pd deposition thickness and annealing conditions. The WO3 thin film with a 2-nm-thick Pd deposit showed a good response and recovery to H2 gas at a 250 degrees C operating temperature.  相似文献   

7.
Annealing effect on structural and electrical properties of W-doped IZO (WIZO) films for thin film transistors (TFT) was studied under different process conditions. Thin WIZO films were deposited on glass substrates by RF magnetron co-sputtering technique using indium zinc oxide (10 wt.% ZnO-doped In2O3) and WO3 targets in room temperature. The post annealing temperature was executed from 200 degrees C to 500 degrees C under various O2/Ar ratios. We could not find any big difference from the surface observation of as grown films while it was found that the carrier density and sheet resistance of WIZO films were controlled by O2/Ar ratio and post annealing temperature. Furthermore, the crystallinity of WIZO film was changed as annealing temperature increased, resulting in amorphous structure at the annealing temperature of 200 degrees C, while clear In2O3 peak was observed for the annealed over 300 degrees C. The transmittance of as-grown films over 89% in visible range was obtained. As an active channel layer for TFT, it was found that the variation of resistivity, carrier density and mobility concentration of WIZO film decreased by annealing process.  相似文献   

8.
Lee CC  Chen HC  Jaing CC 《Applied optics》2005,44(15):2996-3000
The effects of thermal annealing of titanium oxide films deposited by ion-beam assistance at annealing temperatures from 100 degrees C to 300 degrees C on the residual stress and optical properties of the films was investigated. The refractive indices and extinction coefficients increased gradually as the temperature was increased from 100 degrees C to 200 degrees C and then declined gradually as the temperature was increased further from 200 degrees C to 300 degrees C. The film lost oxygen and slowly generated lower suboxides as the annealing temperature was reduced below 200 degrees C, as determined by x-ray photoelectron spectroscopy (XPS). As the annealing temperature increased above 200 degrees C, the lower suboxides began to capture oxygen and form stable oxides. XPS measurements were made to verify both the binding energy associated with the Ti 2p line and the variation of the O 1s line. A Twyman-Green interferometer was employed for phase-shift interferometry to study the residual stress. The residual stress declined as the temperature was reduced from 100 degrees C to 200 degrees C because the lower suboxides reduced the stress in the film. Above 200 degrees C, the film began to capture oxygen, so the residual stress rose. At 300 degrees C, the film was no longer amorphous as the anatase was observed by x-ray diffraction.  相似文献   

9.
Hydrotalcite-like catalysts were synthesized by co-precipitation and then these were promoted by the addition of noble metals, alkaline earth metals and ceria. Reaction tests were conducted using a feed of H2O/C/O2 = 3/1/0.37 at a temperature range from 300 degrees C to 700 degrees C. Catalysts were characterized by XRD, TEM, FESEM, TPR, and BET. Reaction test results confirmed an enhancement of the catalytic activity of the promotor-modified catalysts due to low carbon deposition. Among the alkaline earth metals tested, those with larger atomic number exhibited higher activity at a lower temperature range.  相似文献   

10.
We report the infrared emissions of Er(3+)-Tm3+ co-doped amorphous Al2O3 thin films pumped at 791 nm by a Ti:sapphire laser. The as-deposited films were annealed to improve the photoluminescence performance. Three cross relaxation channels among Er(3+)-Tm3+ and Tm(3+)-Tm3+ ions incorporated in the films were investigated as annealing temperature increases especially from 800 to 850 degrees C. In order to understand the Stark effect and cross relaxations, the photoluminescence spectra were deconvoluted by Gaussian fittings. Our results indicate that the luminescence intensity of 1.62 microm in comparison to 1.5 microm can be enhanced by the cross relaxation process [Er3+ (4I13/2) + Tm3+ (3H6) --> Er3+ (4I15/2) + Tm3+ (3F4)], and the longer-wavelength side of Er3+ emission can be improved by the CR process [Er3+ (4I15/2) + Tm3+ (3H4) --> Er3+ (4I3/2) + Tm3+ (3F4) at expense of the Tm3+ 1.47 microm emission which is also maybe quenched by the CR effect between themselves. These results suggest one possible approach to achieve broadband infrared emissions at the wavelength region of 1.45-1.65 microm from the Er(3+)-Tm3+ co-doped systems.  相似文献   

11.
Ultra low-k dielectric SiCOH films were deposited with decamethylcyclopentasiloxane (DMCPSO, C10H30O5Si5) and cyclohexane (C6H12) precursors by plasma-enhanced chemical vapor deposition at the deposition temperature between 25 and 200 degrees C and their chemical composition and deposition kinetics were investigated in this work. Low dielectric constants of 1.9-2.4 were obtained due to intrinsic nanoscale pores originating from the relatively large ring structure of DMCPSO and to the relatively large fraction of carbon contents in cyclohexane. Three different deposition regions were identified in the temperature range. Deposition rates increased with temperature below 40 degrees C and decreased as temperature increased to 75 degrees C with apparent activation energies of 56 kJ/mol x K at < 40 degrees C, -26 kJ/mol x K at 40-100 degrees C, respectively. In the temperature region of 40-100 degrees C hydrocarbon deposition and decomposition process compete each other and decomposition becomes dominant, which results in apparent negative activation energy. Deposition rates remain relatively unaffected with further increases of temperature above 100 degrees C. FTIR analysis and deposition kinetic analysis showed that hydrocarbon deposition is the major factor determining chemical composition and deposition rate. The hydrocarbon deposition dominates especially at lower temperatures below 40 degrees C and Si-O fraction increases above 40 degrees C. We believe that dielectric constants of low-k films can be controlled by manipulating the fraction of deposited hydrocarbon through temperature control.  相似文献   

12.
Lee CC  Chen HC  Jaing CC 《Applied optics》2006,45(13):3091-3096
Titanium oxide films were prepared by ion-beam-assisted deposition on glass substrates at various substrate temperatures. The effect of the temperature of thermal annealing from 100 degrees C to 300 degrees C on the optical properties and residual stress was investigated. The influence on the stoichiometry and residual stress of titanium oxides deposited at different substrate temperature was discussed. The residual-stress was minimum and the extinction coefficient was maximum at an annealing temperature of 200 degrees C with a substrate temperature of 150 degrees C. However, when the substrate temperature was increased to 200 degrees C and 250 degrees C, the residual stress was minimum and the extinction coefficient was maximum at an annealing temperature of 250 degrees C. The spectra of x-ray photoelectron spectroscopy reveal that the films lost oxygen and slowly generated lower suboxides at the annealing temperature at which the residual stress was minimum and the extinction coefficient was maximum. As the annealing temperature increased above the temperature at minimum stress, the lower suboxides began to capture oxygen and form stable oxides. TiO2 films deposited at substrate temperatures of 200 degrees C and 250 degrees C were more stable than films deposited at 150 degrees C.  相似文献   

13.
ZrO2 interface was designed to block the reaction between SiO2 and Y2O3 in SiO2@Y2O3:Eu coreshell structure phosphor. SiO2@ZrO2@Y2O3:Eu core-multi-shell phosphors were successfully synthesized by combing an LBL method with a Sol-gel process. Based on electron microscopy, X-ray diffraction, and spectroscopy experiments, compelling evidence for the formation of the Y2O3:Eu outer shell on ZrO2 were presented. The presence of ZrO2 layer on SiO2 core can block the reaction of SiO2 core and Y2O3 shell effectively. By this kind of structure, the reaction temperature of the SiO2 core and Y2O3 shell in the SiO2@Y2O3:Eu core-shell structure phosphor can be increased about 200-300 degrees C and the luminescent intensity of this structure phosphor can be improved obviously. Under the excitation of ultraviolet (254 nm), the Eu3+ ion mainly shows its characteristic red (611 nm, 5D0-7F2) emissions in the core-multi-shell particles from Y2O3:Eu3+ shells. The emission intensity of Eu3+ ions can be tuned by the annealing temperatures, the number of coating times, and the thickness of ZrO2 interface, respectively.  相似文献   

14.
We examined the atomic layer deposition (ALD) of silicon dioxide thin films on a silicon wafer by alternating exposures to tetrakis(ethylamino)silane [Si(NHC2H5)4] and O3. The growth kinetics of silicon oxide films was examined at substrate temperatures ranging from 325 to 514 degrees C. The deposition was governed by a self-limiting surface reaction, and the growth rate at 478 degrees C was saturated at 0.17 nm/cycle for Si(NHC2H5)4 exposures of 2 x 10(6) L (1 L = 10(-6) Torr x s). The films deposited at 365-404 degrees C exhibited a higher deposition rate of 0.20-0.21 nm/cycle. However, they contained impurities, such as carbon and nitrogen, and showed poor film qualities. The concentration of impurities decreased with increasing substrate temperature. It was found that the films deposited in the high-temperature regime (478-514 degrees C) showed excellent physical and electrical properties equivalent to those of LPCVD films.  相似文献   

15.
Nanostructured diamond films are grown on a titanium alloy substrate using a two-step deposition process. The first step is performed at elevated temperature (820 degrees C) for 30 min using a H2/CH4/N2 gas mixture to grow a thin (approximately 600 nm) nanostructured diamond layer and to improve film adhesion. The remainder of the deposition involves growth at low temperature (< 600 degrees C) in a H2/CH4/O2 gas mixture. The continuation of the smooth nanostructured diamond film growth during low-temperature deposition is confirmed by in situ laser reflectance interferometry, atomic force microscopy, micro-Raman spectroscopy, and surface profilometry. Similar experiments performed without the initial nanostructured diamond layer resulted in poorly adhered films with a more crystalline appearance and a higher surface roughness. This low-temperature deposition of nanostructured diamond films on metals offers advantages in cases where high residual thermal stress leads to delamination at high temperatures.  相似文献   

16.
Y2O3:Er3+ upconversion materials with nanoporous structures were prepared by a hydrothermal method following a post-thermal treatment. The structure and morphology of the materials were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The results indicated that the as-obtained Y2O3:Er3+ powders were of cubic-phase structure, and the nanoporous structure was formed in the annealing process. The optical results indicated that high annealing temperature could improve the upconversion properties, but it could destroy the nanoporous structure. Under 980 nm excitation, red (4F(9/2) --> 4I(15/2) and green (2H(11/2), 4S(3/2) --> 4I(15/2)) upconversion luminescence was observed. The studies on the intensity dependence of upconversion emission indicated that two-photon processes were responsible for the green and red upconversion luminescence. This kind of multifunctional material has potential applications in nanocontainers for use as biomolecule and drugs carriers.  相似文献   

17.
We demonstrate that the structural transition of ZnS nanoparticles from sphalerite to wurtzite is influenced by high pressures and temperatures. Under the pressure of 1 GPa, the structural transition of ZnS nanoparticles commences at 250 degrees C, much lower than that 400-500 degrees C for ZnS nanoparticles under normal pressures. With the increase of the annealing temperature, the transition is enhanced then inhibited with a maximum transition fraction of 14% at 300 degrees C and disappears at 500 degrees C. At the annealing temperature of 300 degrees C, the structural transition of ZnS nanoparticles keeps almost invariable with the increase of the pressure from 0.6 GPa to 1 GPa. The mechanism for the phenomenon is discussed.  相似文献   

18.
In this paper we introduce mechanical and structural characteristics of diamond-like carbon (DLC) films which were prepared on silicon substrates by radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) method using methane (CH4) and hydrogen (H2) gas. The films were annealed at various temperatures ranging from 300 to 900 °C in steps of 200 °C using rapid thermal processor (RTP) in nitrogen ambient. Tribological properties of the DLC films were investigated by atomic force microscopy (AFM) in friction force microscopy (FFM) mode. The structural properties of the films were obtained by high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the films was obtained using contact angle measurement. XPS analysis showed that the sp3 content is decreased from 75.2% to 24.1% while the sp2 content is increased from 24.8% to 75.9% when the temperature is changed from 300 to 900 °C. The contact angles of DLC films were higher than 70°. The FFM measurement results show that the highest friction coefficient value was achieved at 900 °C annealing temperature.  相似文献   

19.
C nanotubes are synthesized by catalytic route on ceramic supports (Al2O3, MgO and CaO), usually utilized for polymer reinforcing/flame-retardancy, aiming at nanotube-based hybrid preparation. Chemical vapor deposition is carried out in i-C4H10+H2 atmosphere over 17 wt% Fe-catalysts upon different conditions. In order to clarify the influence of support material, calcination (450 degrees C or 750 degrees C) and reduction temperature (500 degrees C or 600 degrees C) of the catalysts, and synthesis temperature (600 degrees C or 700 degrees C), catalysts utilized and nanotubes obtained are systematically investigated by the use of several analysis techniques (electron microscopy, X-ray diffraction, thermo-gravimetry and Raman spectroscopy). The results obtained show that, in the considered range of variation, support material is the most influential parameter. The most catalytically active alumina supports allow achieving higher yields, but involve larger metallic inclusions and lower crystalline quality. Remaining supports behave oppositely. The reasons for such differences are discussed in the light of the current assessments on the nanotube growth and the results obtained are compared with those available in literature for similar catalysts.  相似文献   

20.
Sneha Gupta 《Thin solid films》2008,516(5):850-852
Aluminum-induced in situ crystallization (AIC) of amorphous silicon films deposited by hot wire chemical vapor deposition (HWCVD) on glass is demonstrated. Aluminum was deposited at temperatures varying from room temperature to 300 °C on HWCVD a-Si:H films. The AIC was observed to take place in situ during the deposition of Al films, when the glass/a-Si:H temperature is kept 300 °C. A 20-nm Al film was effective in inducing crystallization of about 63% in the a-Si:H film. Thus, separate post-deposition annealing step can be avoided. For an Al film thickness comparable to the amorphous silicon film deposited at an optimum deposition rate, crystallization at temperature as low as 200 °C is observed. It was also observed that the growth pattern of c-Si in case of AIC without post-deposition annealing was identical to AIC with annealing step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号