首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 724 毫秒
1.
Poly(dimethylsiloxane) based triblock copolymer was synthesized from bis(bromoalkyl)-terminated PDMS macroinitiator (Br-PDMS-Br) and vinyl acetat telomers. Vinyl acetate telomers prepared from radical and controlled radical telomerization with Co(acac)2/DMF catalyst and ligand, were used in atom transfer radical polymerization to synthesize Poly(vinylacetate-b-dimethylsiloxane-b-vinylcetate) triblock copolymer. The PDMS based triblock copolymers revealed a significant effect of Co(acac)2/DMF on PVAc telomere which was used in the synthesis of highly ordered triblock copolymer on a well-defined microstructure. The results were confirmed by 1H NMR and DSC indicating that a low Tg of PDMS in the microstructure of triblock copolymer has made the block copolymer flexible for new applications.  相似文献   

2.
Block copolymers containing segments of poly(dimethylsiloxane) (PDMS) and polystyrene were synthesized. Dihydroxy terminated PDMS Mn 2500 g/mol, was reacted with an ali-phatic diisocyanate (isophorone diisocyanate) and an aliphatic hydroperxide (t-butyl hy-droperoxide). The resulting polymeric peroxycarbamate having siloxane units (a new mac-roinitiator) was used as free radical initiator for vinyl polymerization of styrene. Formation of block copolymers was illustrated by several characterization methods such as chemical and spectroscopic analysis, fractionation, and GPC. Mechanical and thermal characterization of the copolymers were made by stress–strain tests and DSC. The surface properties and the morphology of the block copolymers were investigated by contact angle measurements and SEM. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Poly(vinyl alcohol) (PVAL) and vinyl acetate‐vinyl alcohol copolymers (VAVAL) were esterified with 3,5‐dinitrobenzoyl chloride using the cycled urea N,N′‐dimethylpropyleneurea (1,3‐dimethyl‐3,4,5,6‐tetrahydro‐2(1H)‐pyrimidinone) (DMPU) as the solvent. Vinyl alcohol‐vinyl‐3,5‐dinitrobenzoate copolymers (VALVDNB) and vinyl acetate‐vinyl‐3,5‐dinitrobenzoate copolymers (VAVDNB) were obtained. High degrees of esterification were obtained when PVAL was esterified (86%). The degree of transformation was determined by 1H‐NMR as well as by chemical analysis, and the structure of the resulting polymers by means of IR spectroscopy and 1H‐ and 13C‐NMR. The microstructure of PVA, PVAL, VAVAL copolymers and VALVDNB copolymers were determined from 1H‐ and 13C‐NMR techniques. The sequence distributions for VAVAL copolymers prepared by base‐catalyzed transesterification of PVA were blocky, while the distributions were close to random for VALVDNB copolymers obtained by esterification of PVAL. Thermal properties were studied by DSC. The Tg values of VAVAL, VALVDNB, and VAVDNB copolymers as a function of copolymer compositions were determined. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Poly(dimethylsiloxane)(PDMS)‐based triblock copolymers were successfully synthesized via atom transfer radical polymerization (ATRP) initiated with bis(bromoalkyl)‐terminated PDMS macroinitiator (Br‐PDMS‐Br). First, Br‐PDMS‐Br was prepared by reaction between the bis(hydroxyalkyl)‐terminated PDMS and 2‐bromo‐2‐methylpropionyl bromide. PSt‐b‐PDMS‐b‐PSt, PMMA‐b‐PDMS‐b‐PMMA and PMA‐b‐PDMS‐b‐PMA triblock copolymers were then synthesized via ATRP of styrene (St), methyl methacrylate (MMA) and methyl acrylate (MA), respectively, in the presence of Br‐PDMS‐Br as a macroinitiator and CuCl/PMDETA as a catalyst system at 80 oC. Triblock copolymers were characterized by FTIR, 1H‐NMR and GPC techniques. GPC results showed linear dependence of the number‐average molecular weight on the conversion as well as the narrow polydispersity indicies (PDI < 1.57) for the synthesized triblock copolymers which was lower than that of Br‐PDMS‐Br macroinitiator (PDI = 1.90), indicating the living/controlled characteristic of the reaction. Also, there was a very good agreement between the number‐average molecular weight calculated from 1HNMR spectra and that calculated theoretically. Results showed that resulting copolymers have two glass transition temperatures, indicating that triblock copolymers have microphase separated morphology. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Summary  Poly(ε-caprolactone)-poly(L-lactide) (PCL-PLLA) block copolymers were synthesized via melt or solution sequential copolymerization of ε-caprolactone (ε-CL) and L-lactide (L-LA) using nontoxic dibutylmagnesium as initiator. The formation of block structure was confirmed by 1H-, 13C NMR, GPC, and FT-IR, it can be concluded that the block copolymers PCL-PLLA have been successfully synthesized by both melt and solution sequential copolymerization methods. Two melting endothermic peaks (Tm) during heating and two crystallization exothermal peaks (Tc) during cooling were observed in DSC curves. XRD patterns of the copolymers were approximately the superposition of both the PCL and PLLA homopolymers. The results indicated the coexistence of both PCL and PLLA crystalline microdomains, and the microphase separation took place in the block copolymers.  相似文献   

6.
Graft copolymerization of styrene onto poly(vinyl chloride) (PVC) and polypropylene (PP) was carried out in a supercritical CO2 medium using AIBN as a free radical initiator. The supercritical CO2 medium served as a reaction medium in addition to being a solvent for the styrene monomer and the free radical initiator. The reaction temperature and pressure were kept above the critical points of the solvent‐monomer mixture to form a homogeneous single‐phase medium. The resulting graft copolymers were characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and nuclear magnetic resonance (NMR) techniques. The weight percent of grafting was determined using IR absorbance ratio technique. TGA results showed that the thermal stabilily of grafted copolymer of PVC was better than that of PVC, while grafted copolymer of PP had poorer thermal stability than PP. DSC results showed that glass transition temperatures (Tg's) of the grafted copolymers were higher than those of the starting polymers PVC and PP. The presence of polystyrene attached to the backbone polymer was confirmed by 1H NMR and 13C NMR analyses.  相似文献   

7.
Combination of cationic, redox free radical, and thermal free radical polymerizations was performed to obtain linear and star polytetramethylene oxide (poly‐THF)‐polymethyl methacrylate (PMMA)/polystyrene (PSt) multiblock copolymers. Cationic polymerization of THF was initiated by the mixture of AgSbF6 and bis(4,4′ bromo‐methyl benzoyl) peroxide (BBP) or bis (3,5,3′,5′ dibromomethyl benzoyl) peroxide (BDBP) at 20°C to obtain linear and star poly‐THF initiators with Mw varying from 7,500 to 59,000 Da. Poly‐THF samples with hydroxyl ends were used in the methyl methacrylate (MMA) polymerization in the presence of Ce(IV) salt at 40°C to obtain poly(THF‐b‐MMA) block copolymers containing the peroxide group in the middle. Poly(MMA‐b‐THF) linear and star block copolymers having the peroxide group in the chain were used in the polymerization of methyl methacrylate (MMA) and styrene (St) at 80°C to obtain PMMA‐b‐PTHF‐b‐PMMA and PMMA‐b‐PTHF‐b‐PSt linear and star multiblock copolymers. Polymers obtained were characterizated by GPC, FT‐IR, DSC, TGA, 1H‐NMR, and 13C‐NMR techniques and the fractional precipitation method. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 219–226, 2004  相似文献   

8.
A novel block copolymer, poly(ε‐caprolactone)‐b‐poly(4‐vinyl pyridine), was synthesized with a bifunctional initiator strategy. Poly(ε‐caprolactone) prepolymer with a 2,2,6,6‐tetramethylpiperidinyloxy (TEMPO) end group (PCLT) was first obtained by coordination polymerization, which showed a controlled mechanism in the process. By means of ultraviolet spectroscopy and electron spin resonance spectroscopy, the TEMPO moiety was determined to be intact in the polymerization. The copolymers were then obtained by the controlled radical polymerization of 4‐vinyl pyridine in the presence of PCLT. The desired block copolymers were characterized by gel permeation chromatography, Fourier transform infrared spectroscopy, and NMR spectroscopy in detail. Also, the effects of the molecular weight and concentration of PCLT on the copolymerization were investigated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2280–2285, 2004  相似文献   

9.
Summary Macromonomeric peroxy initiator, poly tetrahydrofuran (poly-THF=inimer) were synthesized via cationic polymerization of THF by the mono- (t-BuBP) and tetra-bromo methyl benzoyl peroxides (BDBP)/ZnCl2 initiating system. The macromonomers were characterized by 1H-NMR, IR, and GPC techniques. Methyl methacrylate (MMA) polymerization initiated by poly-THF inimers at 80°C and different times in bulk gave crosslinked poly-THF-b-polymethyl methacrylate block copolymers. Swelling ratios of the crosslinked block copolymers obtained by taking in same amounts of poly-THF inimer and MMA monomer in CHCl3 were decreased versus time. It was compared the results obtained from t-BuBP-, BDBP-ZnCl2 initiating systems with t-BuBP-, BDBP-AgSbF6 initiating systems for THF monomer. Poly(THF-b-MMA) crosslinked block copolymers containing undecomposed peroxide groups initiated the thermal polymerization of styrene, S, were used to obtain poly(THF-b-MMA-b-S) crosslinked multicomponent copolymers at 90°C. The crosslinked multi component copolymers were investigated sol-gel analysis and swelling ratios in CHCl3. "Active" poly(THF-b-MMA) having peroxygen group were used in the free radical coupling reaction of poly butadien (Poly Bd). Poly(THF-b-MMA)-polybutadien crosslinked blend soluble graft copolymers were obtained. Received: 31 July 2001/Revised version: 16 June 2002/ Accepted: 5 July 2002  相似文献   

10.
Poly(n‐butyl methacrylate)‐b‐polystyrene‐b‐poly(n‐butyl methacrylate) (PBMA‐b‐PSt‐b‐PBMA) triblock copolymers were successfully synthesized by emulsion atom transfer radical polymerization (ATRP). Difunctional polystyrene (PSt) macroinitiators that contained alkyl chloride end‐groups were prepared by ATRP of styrene (St) with CCl4 as initiator and were used to initiate the ATRP of butyl methacrylate (BMA). The latter procedure was carried out at 85°C with CuCl/4,4′‐di (5‐nonyl)‐2,2′‐bipyridine (dNbpy) as catalyst and polyoxyethylene (23) lauryl ether (Brij35) as surfactant. Using this technique, triblock copolymers consisting of a PSt center block and PBMA terminal blocks were synthesized. The polymerization was nearly controlled, ATRP of St from those macroinitiators showed linear increases in the number average molecular weight (Mn) with conversion. The block copolymers were characterized with infrared (IR) spectroscopy, hydrogen‐1 nuclear magnetic resonance (1HNMR), and differential scanning calorimetry (DSC). The effects of the molecular weight of macroinitiators, concentration of macroinitiator, catalyst, emulsion, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP were also reported. POLYM. ENG. SCI., 45:1508–1514, 2005. © 2005 Society of Plastics Engineers  相似文献   

11.
A series of copolymers Poly (TBA-CA-St-ASM)(PTCSA) were synthesized via precipitation polymerization by using tert-Butyl acrylate (TBA), Styrene (St), p-acetoxy styrene (ASM), and cedryl methacrylate (CA) as co-monomer. Then, Poly (TBA-CA-St-HS)(PTCSH) was prepared in the presence of sodium methoxide in methanol. The fourier transfer infrared (FT-IR) spectra and proton nuclear magnetic resonance (1H–NMR) spectra indicated that the synthesis was successful. The molecular weight, glass transition temperature (Tg) and thermal decomposition temperature (T(10%)) of the copolymers increased with the addition of CA. Moreover, a positive-tone chemically amplified Krypton Fluoride (KrF) photoresist was prepared, and the photolithography performance of the photoresist was evaluated using a KrF laser exposure system, the result showed that the resolution could reach the level of 0.25 μm.  相似文献   

12.
Polydimethylsiloxane‐block‐polystyrene‐block‐polydimethylsiloxane (PDMS‐b‐PS‐b‐PDMS) was synthesized by the radical polymerization of styrene using a polydimethylsiloxane‐based macroazoinitiator (PDMS MAI) in supercritical CO2. PDMS MAI was synthesized by reacting hydroxy‐terminated PDMS and 4,4′‐azobis(4‐cyanopentanoyl chloride) (ACPC) having a thermodegradable azo‐linkage at room temperature. The polymerization of styrene initiated by PDMS MAI was investigated in a batch system using supercritical CO2 as the reaction medium. PDMS MAI was found to behave as a polyazoinitiator for radical block copolymerization of styrene, but not as a surfactant. The response surface methodology was used to design the experiments. The parameters used were pressure, temperature, PDMS MAI concentration and reaction time. These parameters were investigated at three levels (?1, 0 and 1). The dependent variable was taken as the polymerization yield of styrene. PDMS MAI and PDMS‐b‐PS‐b‐PDMS copolymers obtained were characterized by proton nuclear magnetic resonance and infrared spectroscopy. The number‐ and weight‐average molecular weights of block copolymers were determined by gel permeation chromatography. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
Amphiphilic poly(acrylic acid-b-styrene-b-isobutylene-b-styrene-b-acrylic acid) (PAA-PS-PIB-PS-PAA) block copolymers were prepared using a combination of quasiliving carbocationic and atom transfer radical polymerization (ATRP) techniques. Poly(styrene-b-isobutylene-b-styrene) (PS-PIB-PS) block copolymer macroinitiators with targeted molecular weights and high degrees of chain end functionality (Fn>1.7) were prepared by quasiliving carbocationic polymerization of isobutylene followed by sequential addition of styrene. Poly(tert-butyl acrylate-b-styrene-b-isobutylene-b-styrene-b-tert-butyl acrylate) (PtBA-PS-PIB-PS-PtBA) pentablock terpolymers with targeted molecular weights and low polydispersities (PDIs) were synthesized from the PS-PIB-PS macroinitiators via ATRP of tBA using either a Cu(I)Cl/1,1,4,7,7-pentamethyldiethylenetriamine (PMDETA) or Cu(I)Cl/tris[2-(dimethylamino)ethyl]amine (Me6TREN) catalyst system. Deprotection of the tert-butyl groups using trifluoroacetic acid at 25 °C resulted in the formation of PAA-PS-PIB-PS-PAA pentablock terpolymers. Comonomer composition of the final terpolymers, determined by 1H-NMR spectroscopy, was very close to theoretical.  相似文献   

14.
This work aims to fabricate new potent superhydrophobic-hybrid coated nanocomposites used as a self-cleaning coating on the glass surface. Three (styrene/vinyl acetate) copolymers with monomer molar ratios of 0.06:0.17, 0.12:0.11, and 0.17:0.06 denoted as Z1-, Z2-, and Z3-copolymers were synthesized using the emulsion phase inversion concentration (EPIC) method. Two functionalized SiO2-NPs using dodecyl triethoxysilane and hexadecyl trimethoxysilane as coupling agents denoted as E-NPs and F-NPs, respectively were fabricated by a sol–gel process to promote the hydrophobicity properties of the synthesized SiO2-NPs. New hybrid composites denoted as Py and Ty(y = 1, 2, and 3) were fabricated by incorporating 1, 3, and 5 wt% of the functionalized SiO2-NPs (E-NPs or F-NPs) into the Z3-copolymers matrix, respectively. The chemical structures of the synthesized copolymers, unfunctionalized SiO2-NPs, and the hybrid composites were elucidated by FTIR and 1HNMR spectroscopes. The surface wettability and topography of the glass-surface coated by synthesized (styrene/vinyl acetate) copolymers and the silica hybrid composites were analyzed using water contact angle, scanning electron, and atomic force microscopes. The results showed that a highly superhydrophobic coated hybrid composite with a contact angle of 161.48° was achieved by Z3-copolymer/F5-NPs denoted as T3-composite at F5-NPs concentration of 5 wt%.  相似文献   

15.
Two series of novel rod–coil block copolymers, poly(ɛ-caprolactone)-b-poly{2,5-bis[(4-methoxyphenyl) oxycarbonyl] styrene} (PCL-b-PMPCS) and poly{2,5-bis[(4-methoxyphenyl) oxycarbonyl] styrene}-b-poly(ɛ-caprolactone)-b-poly{2,5-bis[(4-methoxyphenyl) oxycarbonyl] styrene} (PMPCS-b-PCL-b-PMPCS), were successfully synthesized via atom transfer radical polymerization in chlorobenzene solution using macro-initiator and CuBr/Sparteine complex as catalyst. The results show that the number average molecular weight Mn increased versus the monomer conversion and that the polydispersity Mw/Mn was quite narrow (<1.35), which were the character of controlled polymerization. The structure of the block copolymers was experimentally confirmed by 1H NMR. And the liquid crystalline behavior of them was studied using DSC and POM. The data obtained implied that the block copolymers with low molar percentage of PMPCS block could show Tm of PCL. While only the copolymers with long rigid segment PMPCS could form liquid crystalline phase, which was quite stable with a high clearing point.  相似文献   

16.
The synthesis of a series of new rod-coil diblock copolymers with different molecular weights and low polydispersity was achieved by atom transfer radical polymerization. The block architecture (coil-conformation of styrene segment and rigid-rod conformation of 2,5-bis[(4-methoxyphenyl)-oxycarbonyl]styrene segment) of the diblock copolymers was experimentally confirmed by proton nuclear magnetic resonance (1H NMR) and differential scanning calorimetry (DSC). The liquid crystalline behavior of the copolymers was studied using DSC and a polarized optical microscope (POM). It was found that the liquid crystalline behavior was dependent on the molecular-weight of the rigid segment. Only those copolymers with M n of the rigid block beyond 9,300 g/mol could form liquid crystalline phases above the glass transition temperature of the rigid block.  相似文献   

17.
Diblock, triblock, and alternating block copolymers based on poly[3,3-bis(ethoxymethyl) oxetane] [poly(BEMO)] and a random copolymer center block poly(BMMO-co-THF) composed of poly[3,3-bis(methoxymethyl)oxetane] [poly(BMMO)], and poly(tetrahydrofuran) [poly(THF)] were synthesized and characterized with respect to molecular weight. Glass transition temperatures Tg and melting temperatures Tm were characterized via DSC, modulus–temperature, and dynamic mechanical spectroscopy (DMS). These polyethers had Tm between 70°C and 90°C, and Tg between ?55°C and ?30°C. The degree of crystallinity of poly(BEMO) was found to be 65% by X-ray powder diffraction. Tensile properties of the triblock copolymer, poly(BEMO-block-BMMO-co-THF-block-BEMO) were also studied. A yield point was found at 4.1 × 107 dyn/cm2 and 10% elongation and failure at 3.8 × 107 dyn/cm2 and 760 % elongation. Morphological features were examined by reflected light microscopy and the kinetics of crystallization were studied. Poly(BEMO) and its block copolymers were found to form spherulites of 2–10 μm in diameter. Crystallization was complete after 2–5 min.  相似文献   

18.
The reactive rate and surface wettability of three pentablock copolymers PDMS‐b‐(PMMA‐b‐PR)2 (R = 3FMA, 12FMA, and MPS) obtained via ATRP for coatings are discussed. Poly(dimethylsiloxane) (PDMS) is used as difunctional macroinitiator, poly(methyl methacrylate) (PMMA) as the middle block, while poly(trifluoroethyl methacrylate) (P3FMA), poly(dodecafluoroheptyl methacrylate) (P12FMA) and poly(3‐(trimethoxysilyl)propyl methacrylate) (PMPS) as the end block, respectively. Their reactive rates obtained by gas chromatography (GC) analysis indicate that 3FMA gains 8.053 × 10?5 s?1 reactive rate and 75% conversion, higher than 12FMA (4.417 × 10?5 s?1, 35%), but MPS has 1.9389 × 10?4 s?1 reactive rate and 96% conversion. The wettability of pentablock copolymer films is characterized by water contact angles (WCA) and hexadecane contact angles (HCA). The PDMS‐b‐(PMMA‐b‐P12FMA)2 film behaves much higher advancing and receding WAC (120° and 116°) and HCA (60° and 56°) than PDMS‐b‐(PMMA‐b‐P3FMA)2 film (110° and 106° for WAC, 38° and 32° for HAC) because of its fluorine‐rich surface (20.9 wt % F). However, PDMS‐b‐(PMMA‐b‐PMPS)2 film obtains 8° hysteretic contact angle in WAC (114°–106°) and HAC (32°–24°) due to its higher surface roughness (138 nm). Therefore, the fluorine‐rich and higher roughness surface could produce the lower water and oil wettability, but silicon‐rich surface will produce lower water wettability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40209.  相似文献   

19.
Well‐defined poly(vinyl acetate‐b‐methyl methacrylate) block copolymers were successfully synthesized by the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in p‐xylene with CuBr as a catalyst, 2,2′‐bipyridine as a ligand, and trichloromethyl‐end‐grouped poly(vinyl acetate) (PVAc–CCl3) as a macroinitiator that was prepared via the telomerization of vinyl acetate with chloroform as a telogen. The block copolymers were characterized with gel permeation chromatography, Fourier transform infrared, and 1H‐NMR. The effects of the solvent and temperature on ATRP of MMA were studied. The control over a large range of molecular weights was investigated with a high [MMA]/[PVAc–CCl3] ratio for potential industry applications. In addition, the mechanism of the polymerization was discussed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1089–1094, 2006  相似文献   

20.
A copolymer series was synthesized for migration imaging applications from isobutyl methacrylate and isobutyl styrene such that each homopolymer and all copolymers had glass transition temperature (Tg) near 55°C. The Tg of poly (p-isobutylstyrene) was predicted from literature values of similar polymers to be near 55°C. Poly (p-isobutylstyrene) was synthesised by acetylation of isobutyl benzene, reduction of p-isobutylacetoph-enone to the carbinol, dehydration to p-isobutylstyrene and free radical polymerisation to the polymer. The Tg of the homopolymer was 55°C, in excellent agreement with the predicted value. Copolymers of isobutyl methacrylate and p-isobutyl styrene were synthesised and their Tg's measured across the series by DSC (57°C ± 5°C). refractive index temperature coefficient (42°C ± 5°C). The copolymer series was also characterised by melt viscosity measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号