首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report details development of a route to solution-derived (1− x )Bi1/2Na1/2TiO3· x BaTiO3 powders. The method developed was the citrate-gel method—an evaporative, aqueous technique. When applied to 0.95Bi1/2Na1/2TiO3·0.05BaTiO3 (BNBT-5), the method produced perovskite phase powders that readily densified in the temperature range of 1000°C. The grain size of the sintered materials was on the order of 1 μm, and the weak-field dielectric properties at 1 MHz were similar to those reported for conventionally prepared materials sintered at higher temperatures (e.g., 1200°C).  相似文献   

2.
Dense PbTiO3 ceramics consisting of submicrometer-sized grains were prepared using the spark-plasma-sintering (SPS) method. Hydrothermally prepared PbTiO3 (0.1 μm) was used as a starting powder. The powder was densified to ≳98% of the theoretical X-ray density by the SPS process. The average grain size of the spark-plasma-sintered ceramics (SPS ceramics) was ≲1 μm, even after sintering at 900°–1100°C, because of the short sintering period (1–3 min). The measured permittivity of the SPS ceramics showed almost no frequency dependence over the range 101–106 Hz, mainly because pores were absent from the ceramics. The coercive field of the SPS ceramics was somewhat higher than that of conventionally sintered ceramics, which could be attributed to the small-grained microstructures of the SPS ceramics.  相似文献   

3.
The objective of this work was to lower the sintering temperature of K0.5Na0.5NbO3 (KNN) without reducing its piezoelectric properties. The KNN was sintered using 0.5, 1, 2, and 4 mass% of (K, Na)-germanate. The influence of the novel sintering aid, based on alkaline germanate with a melting point near 700°C, on the sintering, density, and piezoelectric properties of KNN is presented. The alkaline-germanate-modified KNN ceramics reach up to 96% of theoretical density at sintering temperatures as low as 1000°C, which is approximately 100°C less than the sintering temperature of pure KNN. The relative dielectric permittivity (ɛ/ɛ0) and losses (tanδ), measured at 10 kHz, the piezo d 33 coefficient, the electromechanical coupling and mechanical quality factors ( k p, k t, Q m) of KNN modified with 1 mass% of alkaline germanate are 397, 0.02, 120 pC/N, 0.40, 0.44, and 77, respectively. These values are comparable to the best values obtained for KNN ceramics sintered above 1100°C.  相似文献   

4.
Hydrolytic reactions of metal alkoxides offer a broad range of possibilities for their use in the preparation of ceramic powders. This paper reports a unique and novel process to prepare fine powders of BaTiO3 and SrTiO3 from stable precursor solutions by carefully controlling the pH and temperature. This simple route offers good control of stoichiometry and the powders are agglomerate-free with fine particles of size 0.06–0.1 µm and were well sintered at 1200° and 1350°C, respectively. The dielectric properties of the dense ceramics are also reported. The formation aspects of these perovskite phases are also discussed.  相似文献   

5.
Inhibition of cubic-rhombohedral phase transformation and low-temperature sintering at 1000°C were achieved for 10-mol%-Sc2O3-doped cubic-ZrO2 by the presence of 1 mol% Bi2O3. The powders of 1-mol%-Bi2O3–10-mol%-Sc2O3-doped ZrO2 were prepared using a hydrolysis and homogeneous precipitation technique. No trace of rhombohedral-ZrO2 phase could be detected, even after sintering at 1000°–1400°C. The average grain size of the ZrO2 sintered at 1200°C was >2 μm because of grain growth in the presence of Bi3+. Cubic, stabilized Bi-Sc-doped ZrO2 sintered at 1200°C had sufficient conductivity at 1000°C (0.33 S/cm) to be used as an electrolyte for a solid-oxide fuel cell (SOFC) and at 800°C (0.12 S/cm) for an intermediate-temperature SOFC.  相似文献   

6.
Silicon nitride ceramics were prepared by spark plasma sintering (SPS) at temperatures of 1450°–1600°C for 3–12 min, using α-Si3N4 powders as raw materials and MgSiN2 as sintering additives. Almost full density of the sample was achieved after sintering at 1450°C for 6 min, while there was about 80 wt%α-Si3N4 phase left in the sintered material. α-Si3N4 was completely transformed to β-Si3N4 after sintering at 1500°C for 12 min. The thermal conductivity of sintered materials increased with increasing sintering temperature or holding time. Thermal conductivity of 100 W·(m·K)−1 was achieved after sintering at 1600°C for 12 min. The results imply that SPS is an effective and fast method to fabricate β-Si3N4 ceramics with high thermal conductivity when appropriate additives are used.  相似文献   

7.
Tape-cast slurries of Ba2YCu3O7 powders offer a convenient means of preparing sintered ceramic samples for critical current density (Jc) measurements where the transport cross section is small and the current electrode areas are large. Samples were sintered from 900° to 1000°C and characterized for bulk density, grain size, phase composition, Tc, and Jc. Bulk density and grain size both increase with sintering temperature while all samples were single-phase perovskite except for those sintered at 900°C. The onset temperature for superconductivity is constant at about 93 K while the transition sharpens to R=0 at about 92 K for the densest samples. Jc rises with sintering temperature to a maximum of ∼103 A/cm2. A linear relationship between Jc and bulk density is predicted from microstructural considerations.  相似文献   

8.
Complex impedance analysis at cryogenic temperatures has revealed that the bulk and grain boundary properties of BaTiO3 polycrystals are very sensitive to the oxygen partial pressure during sintering. Polycrystals sintered at P O2 as low as 10−15 atm were already electrically heterogeneous. The activation energy of the bulk conductivity in the rhombohedral phase was found to be close to that of the reduced undoped single crystal (i.e., 0.093 eV). The activation energy of the grain boundary conductivity increases with the temperature of the postsinter oxidation treatment from 0.064 to 0.113 eV. Analysis of polycrystalline BaTiO3 sintered in reducing atmosphere and then annealed at P O2= 0.2 atm has shown that the onset of the PTCR effect occurs at much higher temperatures than expected in the framework of the oxygen chemisorption model. The EPR intensity of barium and titanium vacancies increases after oxidation at T > 1000°C. A substantial PTCR effect is achieved only after prolonged annealing of the ceramic in air at temperatures as high as 1200–1250°C. This result suggests that the PTCR effect in polycrystalline BaTiO3 is associated with interfacial segregation of cation vacancies during oxidation of the grain boundaries.  相似文献   

9.
A working subsolidus phase diagram for the system BaTiO3–Ba5Nb4O15 has been determined by firing sol–gel-synthesized samples over a range of temperatures. The main difference from previous diagrams is the greater extent of the Nb-doped BaTiO3 cubic solid solutions, BaTi1−5 x Nb4 x O3, at lower temperatures with x extending to 0.09 at 900°C, but only 0.05 at 1400°C. Electrical property measurements show that compositions with large x ( x ≥0.0025) are highly insulating for pellets sintered at 1300°C in air, followed by a slow cool. Compositions with low x , however, exhibit a residual semiconducting grain core and are not fully reoxidized readily. Composition dependence of the dielectric properties shows a continuous and smooth transition from classic ferroelectric behavior with pure BaTiO3 to normal dielectric response with a temperature-independent relative permittivity of approximately 22–24 for x >∼0.08. At intermediate compositions, ranges of both relaxor ferroelectric and quasi-ferroelectric behavior are observed. Possible reasons for an observed anomalous increase in value of the permittivity at the ferroelectric transition temperature at low x , which is superposed on an overall decrease in permittivity with increasing x , are discussed.  相似文献   

10.
Ba1– x Pb x TiO3 powder with a fixed composition was prepared by the reaction of BaTiO3 powders with molten PbCl2at various PbCl2/BaTiO3 molar ratios at 600° and 800°C in a nitrogen atmosphere. When 0.1 μm powder was used, the reaction was finished when x = 0.9. Two phases of BaTiO3and a solid solution of Ba1– x Pb x TiO3 coexisted, but the final phase gave a solid solution of Ba1– x Pb x TiO3 at 800°C. When 0.5 μm powder was used, the two phases coexisted in the products at 600°C at PbCl2/BaTiO3= 1.0. A sintered compact of Ba1– x Pb x TiO3 powders solid solution was prepared by hot isostatic pressing, and its dielectric constant was measured in the temperature range 20°–550°C.  相似文献   

11.
Nanoparticles of strontium titanates (SrTiO3, Sr2TiO4) and lead titanate (PbTiO3) have been obtained using reverse micelles as nanoreactors. Powder X-ray diffraction studies of the powders after calcining at 800°C show monophasic SrTiO3, Sr2TiO4, and PbTiO3. X-ray line broadening studies and transmission electron microscopic studies show spherical grains of 30–40 nm size for strontium titanates, while PbTiO3 is obtained in the form of nanorods. The dielectric constant of SrTiO3 and Sr2TiO4 is found to be 90 and 30, respectively, (at 100 kHz) for samples sintered at 1000°C. PbTiO3 shows a dielectric constant of 160 (at 100 kHz) after sintering at 900°C. The dielectric constant of Sr2TiO4 (with temperature) is highly stable. The temperature variation studies of the dielectric constant of PbTiO3 show a ferroelectric phase transition at 490°C (1 kHz). The T c varies with frequency and is found to decrease to 470°C at 100 kHz.  相似文献   

12.
A relaxor ferroelectric material, 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (0.9PMN-0.1PT) with a pyrochlore-free phase, was prepared by using one-step calcination in the present study. The 0.9PMN-0.1PT powder with the pure perovskite phase was prepared successfully from a mixture of the PMN precursor and the crystalline PT by heating for 2 h at temperatures greaterthan equal to750°C. The PMN precursor was synthesized by adding an aqueous Mg(NO3)2 solution, rather than MgO, to the alcoholic slurry of PbO and Nb2O5. The 0.9PMN-0.1PT powder sintered to >96% relative density via heat treatment for 2 h at temperatures of 900°-1200°C. The highest room-temperature dielectric constant (epsilonrt) was 24700 at 1 kHz for the samples that were sintered at 1100°C; however, the samples that were sintered at 900°C still had epsilonrt values of 22600 at 1 kHz.  相似文献   

13.
Dense, small-grained BaTiO3 ceramics, with a grain size around 1 μm and a relative sintered density >98%, were obtained at 1100°C from sol-gel-derived gel monoliths without using any sintering additives. The monolithic gels asprepared had a relative density of about 50% and consisted of ultrafine pseudo-cubic BaTiO3 particles (<50 nm). These gels, with a significantly high density compared with that of previous ones (∼30%), have been synthesized at room temperature from a sol solution with a concentration of equimolar mixture of titanium isopropoxide and barium ethoxide (0.8 mol/L), using the methanol/2-methoxyethanol mixed-solvent system. Microstructural development of the gel monoliths with increasing sintering temperature and the dielectric properties of the obtained dense BaTiO3 ceramic have been investigated.  相似文献   

14.
The photoluminescence of Mg-doped BaTiO3:Pr3+ (Pr3+: 0.1 mol%) ceramics was investigated by changing the doping concentration of Mg and the sintering temperature. The results indicated that the intensity of red emission due to the 1 D 23 H 4 transition of Pr3+ exhibited significant dependence on both the Mg doping content and the sintering temperature; the strongest red emission intensity was observed for 2.0 mol% Mg-doped ceramics sintered at 1050°C. An interpretation of the results obtained was made in terms of the changes in the crystal structure and microstructure of the ceramics.  相似文献   

15.
In the present work, the phase formation and thermal evolution in phosphorus-doped BaTiO3 have been studied using differential thermal analysis, X-ray diffractometry, scanning electron microscopy coupled with energy-dispersive spectroscopy, transmission electron microscopy, and high-temperature nuclear magnetic resonance. Phosphorus cations that are incorporated from ester phosphate form a surface layer that covers the BaTiO3 particles. This layer acts as a reactive coating during sintering. Phosphorus-doped BaTiO3 samples that have been treated at temperatures of 650°–900°C show the presence of crystalline Ba2TiP2O9 and/or Ba3(PO4)2 phases. The appearance of secondary phases is dependent on the cooling rate. Higher temperatures (900°–1200°C) result in the presence of a phosphorus–BaO-rich phase that covers the BaTiO3 particles. As a consequence, the remaining titanium-rich BaTiO3 drives the formation of a liquid phase at temperatures >1200°C. In regard to the reported sintering behavior of P5+-doped BaTiO3, the formation of a phosphorus–BaO-rich phase that covers the BaTiO3 particles could be the origin of the improved porosity coalescence and removal that is observed at the earlier stages of sintering.  相似文献   

16.
The synthesis of dense sintered sialon with external additives selected from the system Y2O3–AIN–SiO2 is reported. The highest density (3.21 g/cm3) was achieved at 1750°C at 90 min of sintering with 5 wt% additive. The degree of sialon substitution increased with the amount of liquid; the YSiO2N crystalline phase formed concurrently. Strength degradation occurred above 1000°C. The fracture toughness of the material sintered with a lower amount of sintering aid remained relatively unchanged to 1200°C. The material with more additive exhibited decreased toughness above 1000°C.  相似文献   

17.
The mechanical properties of chemically treated, then sintered, Si3N4 was studied. Raw materials consisted of two types of Si3N4 produced by the nitridation of silicon. The chemical treatment involved leaching in different acids (HCl, HNO3, HF, and combinations thereof). The powders were sintered by hot isostatic pressing with 2.5% yttria, and the high-temperature properties of the resultant materials were evaluated by the stepped-temperature stress rupture (STSR) method (24-h hold time at 150-MPa stress at 1000°, 1100°, 1200°, 1300°, and 1400°C). A significant decrease in high-temperature performance was observed for acidleached powders, especially when HF-containing acids were used.  相似文献   

18.
Semiconducting BaTiO3 ceramics have been prepared by adding BN as a sintering aid. Density as high as 93% of theoretical and grain size as large as 16 μm are obtained after sintering at 1160°C. Most significant is that the semiconducting BaTiO3 is obtained at sintering temperatures as low as 1100°C. The low-temperature-sintered BaTiO3 exhibits a positive temperature coefficient. (PTC) anomaly above 120°C with a resistivity maximum at a temperature as high as 400°C, which is much higher than that of the conventional BaTiO3. The incorporation of B into the perovskite structure is negligible. Also, the presence of B at a grain boundary after sintering is believed to enhance the PTC effect.  相似文献   

19.
Highly densified MgB2 superconductors were successfully fabricated using a spark plasma sintering (SPS) technique, and their superconductivity with respect to microstructural evolution was evaluated. Full densification with final density close to the theoretical density was achieved at a temperature of 1000°C within a total SPS processing time of 40 min. Both an MgB2 specimen sintered at 1000°C for 30 min and one sintered at 1050°C for 10 min exhibited a high critical transition temperature ( T c) similar to that of an MgB2 single crystal (39 K), and a very sharp superconducting transition width (Δ T ) less than 0.5 K. In addition, high critical current densities ( J c) of 7.7 × 105 A/cm2 in a field of 0.6 T at 5 K and of 8.3 × 104 A/cm2 in a field of 0.09 T at 35 K were obtained. These excellent superconducting characteristics of the SPS-processed MgB2 are attributed to uniformly distributed secondary MgO phase nanoparticles and well-developed dislocations in the microstructure that may act effectively as extrinsic flux pinning sites, resulting in the strong pinning force showing a high J c of 8.7 × 104 A/cm2 even in the condition of a field of 4 T at 5 K.  相似文献   

20.
Ti/Si/2TiC powders were prepared using a mixture method (M) and a mechanical alloying (MA) method to fabricate Ti3SiC2 at 1200°–1400°C using a pulse discharge sintering (PDS) technique. The results showed that the Ti3SiC2 samples with <5 wt% TiC could be rapidly synthesized from the M powders; however, the TiC content was always >18 wt% in the MA samples. Further sintering of the M powder showed that the purity of Ti3SiC2 could be improved to >97 wt% at 1250°–1300°C, which is ∼200°–300°C lower than that of sintered Ti/Si/C and Ti/SiC/C powders using the hot isostatic pressing (HIPing) technique. The microstructure of Ti3SiC2 also could be controlled using three types of powders, i.e., fine, coarse, or duplex-grained, within the sintering temperature range. In comparison with Ti/Si/C and Ti/SiC/C mixture powders, it has been suggested that high-purity Ti3SiC2 could be rapidly synthesized by sintering the Ti/Si/TiC powder mixture at relatively lower temperature using the PDS technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号