首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
以粉煤加压气化工艺为对象,基于ChemCAD仿真软件建立了煤气化过程仿真模型,采用中心复合设计进行了煤气化仿真试验,构建煤气化性能指标与工艺参数间的响应曲面,并在此基础上对煤气化各工艺参数对气化性能的主效应和交互效应进行了分析.结果表明:氧煤质量比是影响煤气化性能最重要的工艺参数,氧煤质量比的增加能提高煤气中CO体积分数、产气率和碳转化率,但会降低H2体积分数;蒸汽煤质量比主要影响煤气的有效气体成分,H2体积分数随其值提高而显著增加,CO体积分数下降;蒸汽煤质量比对产气率和碳转化率影响较小;压力对煤气中有效气体成分、产气率和碳转化率影响均不显著;氧煤质量比、蒸汽煤质量比和压力的综合效应对煤气中有效气体成分影响不显著,但对产气率和碳转化率等生产效率指标影响显著.  相似文献   

2.
以木屑炭为原料,K2CO3作为催化剂,以固定床气化炉为实验设备,进行水蒸气催化气化木屑炭的探究。考察木屑炭水蒸气气化的炭转化率、产氢率、气体组成体积分数和H2/CO比值随K2CO3催化剂质量分数(0~8%)、水蒸气流量(0.15~0.35 g/(min·g))、气化温度(800~950℃)变化的规律。实验结果表明:K2CO3催化剂可显著提升碳转化率及产氢率,K2CO3质量分数为8%时,碳转化率和产氢率分别达到86.3%和125.6 g/kg,同时合成气中CO体积分数显著增加,H2/CO比值降至2.43。增加水蒸气流量,合成气中H2含量显著增大,H2/CO比值随之增大。温度可有效促进炭气化过程,950℃时碳转化率和产氢率分别达到84.3%和127.1 g/kg,但合成气中CO体积分数增大,H2/CO比值降至2.48。实验得到H2/CO比值在2.43~5.16范围的合成气。气化反应温度在900℃、水蒸气0.2 g/(min·g)、K2CO3质量分数3%时,碳转化率可达80.4%,产氢率109.6 g/kg,合成气中(H2+CO)体积分数82.4%,同时H2/CO比值高达3.05。  相似文献   

3.
针对生物质气化过程中焦油量大、产气率低等问题,应用高温水蒸气催化气化的方法提高了产氢率,增大了生物质能源的利用率。以内配褐铁矿粉的松木屑成型颗粒为气化原料,采用廉价易得的褐铁矿作为催化剂,以高温水蒸气作为气化剂。通过实验得出:质量分数为15.00%的褐铁矿,在气化温度750℃、蒸汽质量流量0.89kg/h条件下,1.5kg成型颗粒1h总产气量为800L,H2体积分数为55.28%,气体热值为11.31MJ/m3,与无添加相比,产气量增加了11.1%,总热能产出增加了5.78%;气化终温850℃下,产气量970L,H2体积分数57.13%,热能产出量达到了10.33 MJ。  相似文献   

4.
电子废物塑料熔融盐气化特性研究   总被引:2,自引:0,他引:2  
研究了在功率为6kW的熔融盐气化炉内,电子废弃物的三种塑料原料丙烯腈-丁二烯-苯乙烯、聚苯醚和聚甲醛的气化产气规律,考察了空气量对产气量、产气热值以及气体转化率的影响.结果表明:随着空气量的增加,样品的气体转化率和产气量都有所提高,在40%的理论空气量下,丙烯腈-丁二烯-苯乙烯、聚苯醚和聚甲醛的气体转化率都达到96%以上,产气单位体积热值分别在35MJ/m~3,25MJ/m~3,13MJ/m~3左右.  相似文献   

5.
中型流化床中的生物质气化实验研究   总被引:13,自引:0,他引:13  
以空气为气化介质,在中型流化床反应器上进行了生物质(木屑)气化实验研究。考察了当量比ER(0.20~0.34)、气化温度(670~820℃)对气化结果的影响,初步探讨加入二次风对气化的影响。在实验研究的条件范围内,煤气热值在5650~6665kJ/m3范围内变化,生物质产气率在1.51~2.26m3/kg之间变化,碳转化率在74.3%~90.8%之间变化,气化效率达到61.8%~78.1%;加入适量二次风可以提高气化效率和碳转化率,减少焦油含量。实验结果表明:此流化床气化炉当气化温度在720~770℃之间,当量比ER在0.24~0.28之间时,气化效果最好,此时煤气热值可达到6400~6600kJ/m3,产气率为1.75~1.95m3/kg,碳转化率为83%~89%,气化效率高达71%以上。  相似文献   

6.
在10 MW级生物质气化耦合燃煤发电工程项目上,考察了当量比、添加蒸汽、掺混秸秆对稻壳气化特性的影响。在当前的实验条件下,随着当量比在0. 14~0. 20的范围内增加时,CO、H_2和CH_4的体积分数均随之减少,燃气热值和气化效率也随当量比的增大而降低;添加适量蒸汽可以促进CO、H_2和CH_4及燃气热值的提高,气化效率则随蒸汽量的增加而升高;当秸秆掺混比例逐渐增加时,CO、H_2和CH_4的体积分数和燃气热值出现了不同程度的下降,气化效率也不断降低。  相似文献   

7.
空气当量比对生物质和煤共气化影响的研究   总被引:1,自引:0,他引:1  
采用新型床料对松木屑与烟煤的流化床共气化进行研究.在生物质掺混比例为50%的工况下,当空气当量比(ER)从0.2增加到0.28时,产气中H2的体积分数从14.1%上升到26.9%,CO的体积分数从28.9%减小到21.8%,CO2的体积分数呈上升趋势,CH4和CnHm的体积分数逐渐下降;燃气热值在ER为0.25时最大,大约为7 180 kJ/m3;气化效率为44%~53%;混合燃料的碳转化率为74%~76%.随着ER的增加,共气化的主要反应、燃料有机特性、松木屑的灰特性呈现不同的变化规律,从而对共气化参数产生影响.探求气化参数的变化规律将为共气化反应器的结构设计和运行参数的选择提供依据.  相似文献   

8.
生物质气化制氢有重要的工业应用价值,本文采用ASPEN PLUS软件数值模拟了稻壳在流化床中的气化过程。本次模拟运用吉布斯自由能最小化原理,选择RGibbs和RYield模块,采用CO2作为气化剂,计算获得了气化温度、CO2质量流量、CO2和稻壳质量比和碳转化率对产氢率的影响规律。结果表明:在CO2质量流量为200kg/h时,H2的生成率高达43%。随着CO2/B增加,CO和CO2体积分数逐渐升高,CH4体积分数下降,H2体积分数在不同的气化温度下趋于平稳(600~700℃)或下降(800~1000℃)。随着气化温度升高,碳转化率增加;随着CO2和稻壳质量比的升高,碳转化率下降。  相似文献   

9.
在固定床反应器中对城市生活垃圾进行原位水蒸气气化制氢研究,考察了加热方式、反应温度以及含水率对城市生活垃圾原位水蒸气气化特性的影响。结果表明,快加热方式有利于提高燃气品质和降低焦油含量;随着反应温度的增加,气体产物含量增加,焦油含量和半焦含量下降,气体组分中H2和CO含量升高,碳转化率从30.49%增加到56.79%;当城市生活垃圾含水率为39.45%时,产气品质最高,气体成分中H2含量达到最高值25.8%,气体的低位热值达到17.02 MJ/m3;温度升高和蒸汽引入能改变半焦产物的表观形貌,并能提高半焦产物的BET以及灰分含量。  相似文献   

10.
为了探索大型加压流化床煤气化的最佳操作条件和设计参数,建立了针对加压流化床气化方式的计算模型,包括颗粒模型、气相模型、气泡模型和焓平衡模型,分析了单位给煤量、氧量和水蒸气等操作参数对碳转化率、产气量和冷煤气效率等参数的影响,并确定了给煤量的最佳操作范围.结果表明:初期碳转化率均保持在99%以上,对于相同床面积的气化炉,可通过提高反应压力来提高气化炉处理量;反应压力由1.5MPa提高到2.1MPa时(提高40%),单位煤产气量可增加34%以上;反应压力为2.1 MPa时,给煤量的最佳操作范围为2.0~2.5kg/(m2·s);氧煤比为0.6~0.7时,冷煤气效率可达到77%;生成气体的热值与水蒸气比成正比.  相似文献   

11.
林良生  赵长遂 《热能动力工程》2012,27(3):355-360,395,396
运用Aspen Plus软件平台对天然焦-H2O气化反应进行了热力学模拟计算,研究了反应碳份额、水蒸气流量、反应温度、压力和反应气氛对天然焦气化反应煤气成份、热值的影响。结果表明,RYIELD模块在整个模拟系统中能很好地描述天然焦"热解"过程;水蒸气流量1.16 kg/h是天然焦完全气化的临界点;增大温度和压力能有效促进气化和改善煤气的品质,但并非越大越好,综合考虑下,实际运行的温度和压力宜分别在850~1 000℃和0.1~6.0 MPa范围内选定;不同的反应气氛下,天然焦气化反应特性有很大差异,在水蒸气气氛下能获得更好的煤气品质。  相似文献   

12.
To utilize low-rank coal and biomass in a highly efficient and environmental-friendly manner, a co-pyrolysis system coupled with char gasification is investigated. This system has five main units, namely, the drying and mixing, pyrolysis, cooling and separation, combustion, and gasification units, which are simulated by ASPEN plus based on experimental data. Results show that 37% of the pyrolysis char is burned to supply heat for pyrolysis and drying processes based on cascade utilization of heat energy, whereas the rest is sent to a gasifier. The sensitivity analysis is performed to investigate the impacts of steam and O2 injection on gas composition, gasification temperature, carbon conversion efficiency, heating value of gas during gasification, and gas production efficiency. The fractions of H2, CH4, CO, and CO2 demonstrate diverse variation tendencies with an increasing equivalence ratio and steam-to-char (S/C) ratio. However, carbon conversion efficiency reaches its peak of 99.91% when the equivalence ratio is approximately 4 regardless of S/C ratio. An equivalence ratio of 4 and S/C ratio of 0.15 are used as decent examples to calculate the mass balance and to simulate the overall system. Results show that 1000 kg/h coal and 500 kg/h biomass can produce 285.83 m3/h pyrolysis gas and 2580.78 m3/h gasification gas with low heating values of 8.20 and 9.746 MJ/m3, respectively.  相似文献   

13.
流化床部分煤气化实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在一台小型流化床部分煤气化气化炉上,以空气和水蒸气为气化剂,在不同操作条件下(给煤量、流化风量和蒸气量),进行了三种不同煤种的气化实验。研究结果表明,床温随给煤量和蒸汽量的增加以及流化风量的减小而降低;在一定范围内。煤气中CO含量随给煤量、流化风量和蒸汽量的增加以及煤化程度的降低而升高;煤气中H2含量随给煤量和煤化程度的升高以及流化风量和蒸汽量的减小而降低;CH4含量随给煤量的增加而增加,随流化风量、蒸汽量和煤化程度的升高而降低。另外,煤化程度升高,生成煤气的热值减小。  相似文献   

14.
Pressurized drop tube furnace (PDTF) tests were performed with an Indonesian sub‐bituminous coal while temperature, oxygen/coal ratio, steam/coal ratio and pressure were systematically varied. The tests were designed to investigate the effects of these experimental parameters on the pulverized coal gasification characteristics at elevated pressure. The results showed that the gasification at elevated pressure is more productive than that at atmospheric pressure, considering the carbon conversion and cold gas efficiency. The oxygen/coal ratio at the maximum cold gas efficiency ranged between 0.5 and 0.7 g/g. Only when the temperature was sufficiently high, did the increase of steam/coal ratio result in the improvement of cold gas efficiency. As the pressure increased, the contribution of carbon conversion by heterogeneous reactions increased while the conversion by pyrolysis decreased. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
我国发展煤制天然气误区分析   总被引:1,自引:1,他引:0  
从煤炭中的C转化成CH4,需要进行煤气化、脱硫、CO变换、脱除CO2,然后甲烷化反应。在这一生产过程中,碳的利用率和热能转换率均约为1/3,制取1000m3的CH4要放出约3.34t的二氧化碳。按照我国拟建和在建的煤制天然气规模360×108m3/a、碳的利用率1/3计,将浪费煤炭5664×104t标煤,排放二氧化碳1.2×108t,总投资需2100亿元。据测算,煤制天然气生产成本约为3元/m3CH4,与管输进口天然气相比,价格上没有竞争性,并带来环境污染。由于煤制天然气投资费用高(1000m3/a天然气的投资费用约合5833元)、碳与热能利用率低、污染源处理费用高,所以煤制天然气不应该是煤清洁利用的发展方向。我国常规天然气储量和产量迅速增加,预计到2020年天然气产量将达到2000×108m3(约合2×108t油当量),而有关机构预测我国2020年天然气消费量为1.46×108t油当量,国产常规天然气产量就可满足国内燃料消费需求,为此我国完全没有必要大规模建煤制天然气项目。  相似文献   

16.
To enhance clean energy utilization and reduce greenhouse gases, various gasification technologies have been developed in the world. The gasification characteristics, such as syngas flow rate, compositions, cold gas efficiency and carbon conversion, of petroleum coke and mixture of petroleum coke and lignite were investigated in a 1 T/d entrained-flow gasifier (I.D. 0.2 m × height 1.7 m) with quencher as a syngas cooler. CO concentration was 31–42 vol% and H2 concentration was almost 22 vol% in the gasification experiments of petroleum coke. In the case of mixture of petroleum coke and lignite, CO concentration was 37–47 vol% and H2 concentration was almost 25 vol% due to synergy effect. The gasification of mixture resulted in higher syngas heating value and cold gas efficiency because of the higher H2 and CO composition in syngas.  相似文献   

17.
以一个常压流化床为反应器,采用膜分离技术制氧,对煤富氧-水蒸气气化制取煤气的特性进行实验研究,通过对试验数据的分析,探讨了两种不同煤种的典型运行结果,分析H2O/C对气化温度、煤气成分及热值影响,以及氧浓度对实验结果的影响。结果表明氧浓度的提高,明显增加了煤气的热值,氧浓度从21%提高到30%时,煤气热值提高了1.18 MJ/m3;在温度为920℃,氧浓度30%,H2O/C比为1,O/C比为0.8,煤气热值达到5.95 MJ/m3。  相似文献   

18.
在1台小型常压流化床气化炉上进行空气和水蒸汽存在条件下的煤部分气化试验,研究石灰石、碳酸钠和白云石3种催化剂对煤气组分、热值、煤气产率和碳转化率的影响。试验结果表明:添加催化剂能够有效地提高煤气质量、煤气产率和碳转化率,其中碳酸钠的催化效果最好,石灰石次之,白云石最差。图5表2参10  相似文献   

19.
《能源学会志》2014,87(1):35-42
It is commonly accepted that gasification of coal has a high potential for a more sustainable and clean way of coal utilization. In recent years, research and development in coal gasification areas are mainly focused on the synthetic raw gas production, raw gas cleaning and, utilization of synthesis gas for different areas such as electricity, liquid fuels and chemicals productions within the concept of poly-generation applications. The most important parameter in the design phase of the gasification process is the quality of the synthetic raw gas that depends on various parameters such as gasifier reactor itself, type of gasification agent and operational conditions. In this work, coal gasification has been investigated in a laboratory scale atmospheric pressure bubbling fluidized bed reactor, with a focus on the influence of the gasification agents on the gas composition in the synthesis raw gas. Several tests were performed at continuous coal feeding of several kg/h. Gas quality (contents in H2, CO, CO2, CH4, O2) was analyzed by using online gas analyzer through experiments. Coal was crushed to a size below 1 mm. It was found that the gas produced through experiments had a maximum energy content of 5.28 MJ/Nm3 at a bed temperature of approximately 800 °C, with the equivalence ratio at 0.23 based on air as a gasification agent for the coal feedstock. Furthermore, with the addition of steam, the yield of hydrogen increases in the synthesis gas with respect to the water–gas shift reaction. It was also found that the gas produced through experiments had a maximum energy content of 9.21 MJ/Nm3 at a bed temperature range of approximately 800–950 °C, with the equivalence ratio at 0.21 based on steam and oxygen mixtures as gasification agents for the coal feedstock. The influence of gasification agents, operational conditions of gasifier, etc. on the quality of synthetic raw gas, gas production efficiency of gasifier and coal conversion ratio are discussed in details.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号