共查询到19条相似文献,搜索用时 62 毫秒
1.
基于核可能性聚类算法和油中溶解气体分析的电力变压器故障诊断研究 总被引:21,自引:4,他引:21
变压器油中溶解气体分析(Dissolved Gas Analysis,DGA)是电力变压器绝缘诊断的重要方法.针对模糊C均值聚类算法用于溶解气体成分分析时存在的问题,文中将核函数和可能性聚类算法相结合,提出一种简化的核可能性聚类算法,并将其用于变压器DGA数据分析,从而实现变压器的故障诊断.经实践证明,该算法能快速、有效地对样本进行聚类,且特别适用于含有噪声样本的环境. 相似文献
2.
变压器油中溶解气体分析中的模糊模式多层聚类故障诊断方法的研究 总被引:35,自引:11,他引:35
基于当前对电力变压器故障识别中的模型空间划分缺乏研究的情况,将模糊聚类技术引入了电力变压器油中溶解气体分析DGA。在对所收集的183组电力变压器绝缘故障样本进行了多层树形聚类的基础上,通过多次分析绝缘故障,得到了一种准确程度较高的故障诊断方法。 相似文献
3.
4.
针对模糊聚类及核聚类算法在电力变压器DGA分析中存在的初值敏感及易陷入局部极值点的问题,提出了一种人工免疫优化模糊核聚类的新算法。该算法将基于克隆选择原理和亲和力成熟的免疫克隆算法与模糊核聚类算法相结合,采用群体搜索策略,将待分类的数据对象视为抗原(Ag),把聚类中心看作抗体(Ab),通过免疫系统不断产生抗体,识别抗原来优化FKCM的目标函数,能快速地获得全局最优解。仿真结果证明了该算法在变压器故障诊断上的可行性和有效性。 相似文献
5.
基于遗传聚类算法的油中溶解气体分析电力变压器故障诊断 总被引:2,自引:0,他引:2
电力变压器油中溶解气体分析DGA(Dissolved Gas Analysis)是电力变压器故障诊断的重要方法,为了克服模糊C-均值算法存在的聚类中心数不容易确定,以及容易陷入极小的问题,在运用改进遗传算法的基础上,探讨了一种将自适应遗传算法和模糊C-均值相结合的遗传-模糊聚类算法,并将其应用于DGA电力变压器数据分析,实现了变压器的故障诊断。实验数据表明:该算法收敛速度快,能有效地对样本进行聚类,提高了识别故障率。 相似文献
6.
灰色聚类与模糊聚类集成诊断变压器内部故障的方法研究 总被引:33,自引:12,他引:33
根据反映变压器绝缘状态的模糊和灰色特征,采用模糊聚类方法,对若干典型故障样本聚类成C个灰类,得到C个最优聚类中心。依据聚类中心矩阵并借助灰色系统理论,提出了一种确定故障诊断各灰类白化权函数的原则和算法,根据该算法,首先求出各待检模式状态的灰色聚类系数,进而建立了一种灰色聚类与模糊聚类相结合的变压器故障诊断的新模型,进行了大量的该模型应用实例分析,结果表明该文方法的诊断准确度高于现有的常用方法。 相似文献
7.
基于加权模糊核聚类的发电机组振动故障诊断 总被引:1,自引:0,他引:1
对模糊C均值(fuzzy C-means,FCM)在机组振动故障诊断中存在不足,提出了一种加权模糊核聚类方法(weighted fuzzy kernel clustering,WFKC)。该方法用Mercer核将样本从输入空间映射到高维特征空间,在特征空间进行聚类,同时考虑到不同特征对聚类结果的不同影响,利用基于样本相似度的加权方法对特征进行加权,在特征空间实现加权模糊聚类。用3组标准测试数据集验证了该方法的聚类效果和分类准确性。最后将该方法应用于发电机组故障诊断,应用实例表明所提出的方法有效,诊断结果可靠。 相似文献
8.
9.
10.
GRA方法在变压器故障诊断中的应用研究 总被引:3,自引:1,他引:3
以油中溶解气体分析DGA(Dissolved Gas Analysis)为依据的变压器故障诊断,传统的方法是基于数据间的比值进行的。文中避开了传统的比值方法,提出了用灰色关联分析GRA(Grey Relational Analysis)方法诊断变压器故障,灰关联分析是对贪信息多因素中的一种处理数据方法,基于灰色关联度理论,对历年来相关技术刊物上公布的变压器油中溶解气体分析数据进行了统计,选出实际结论明确的167台次样本并进行故障分类,从中筛选出一组特征序列数据,将实测数据与特征数据进行灰色关联度比较及故障类型判断,结合实例验证了该方法的正确性,是一种较好的评判变压器故障类型的方法。 相似文献
11.
12.
基于模糊三比值法的电力变压器绝缘故障诊断研究 总被引:1,自引:0,他引:1
针对常用于充油变压器绝缘故障诊断的三比值法的局限性,提出了模糊三比值故障诊断法。仿真分析表明,模糊三比值法判断故障类型的准确率更高。 相似文献
13.
14.
针对FCM(模糊C-均值聚类)在变压器故障诊断中的不足,提出采用纵横交叉算法优化FCM(CSOFCM)聚类来进行故障诊断。溶解气体分析与FCM相结合,能有效提高变压器故障诊断的准确率,但FCM存在聚类结果不稳定和容易陷入局部最优等问题。而纵横交叉算法是一种基于种群的随机搜索算法,在算法中首次提出了维局部最优概念和纵横交叉双搜索思想。实验证明,相比其它主流群智能优化算法,CSO算法在解决维数灾问题和收敛精度问题方面取得了较大突破,能有效克服局部最优的问题。新诊断模型有效弥补了单一诊断法的不足,拥有全局收敛性强和处理模糊信息的能力。实例分析表明,该方法与传统FCM相比,能获得更优的聚类中心,有效提高了变压器故障诊断的准确性和快捷性。 相似文献
15.
16.
17.
针对油中溶解气体新导则在变压器故障诊断中存在的问题,分析了变压器故障诊断的物元分析决策方法.电力变压器故障诊断具有复杂性,各种因素的识别和故障类型的划分之间具有不相容性,应用物元分析理论,构建物元矩阵,根据计算出的关联度大小对故障类型进行可拓识别.实际算例分析,验证了本模型的有效性和可行性. 相似文献
18.