首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Optical soliton transmission of 5 Gb/s over a 23-km amplification spacing using a gain-switched 1.55-μm distributed feedback laser diode and Ti:LiNbO3 intensity modulator is discussed. An Er +-doped fiber amplifier, pumped by 1.45- and 1.48-μm laser diodes, is employed for achieving intense optical pulses. Transmission fiber-loss is completely compensated for by Raman amplification using by 1.45- and 1.48-μm laser-diode pumping. A bit error rate (BER) of 2×10-10 has been obtained  相似文献   

2.
A rate-equation analysis of the erbium 3-μm ZBLAN fiber laser is performed. The computer calculation includes the longitudinal spatial resolution of the host material. It considers ground-state bleaching, excited-state absorption (ESA), interionic processes, lifetime quenching by co-doping, and stimulated emission at 2.7 μm and 850 mn. State-of-the-art technology including double-clad diode pumping is assumed in the calculation. Pump ESA is identified as the major problem of this laser. With high Er3+ concentration, suitable Pr3+ co-doping, and low pump density, ESA is avoided and a diode-pumped erbium 3-μm ZBLAN laser is predicted which is capable of emitting a transversely single-mode output power of 1.0 W when pumped with 7-W incident power at 800 nm. The corresponding output intensity which is relevant for surgical applications will be in the range of 1.8 MW/cm2. Compared to Ti:sapphire-pumped cascade-lasing regimes, the proposed approach represents a strong decrease of the requirements on mirror coatings, cavity alignment, and especially pump intensity. Of the possible drawbacks investigated in the simulation, only insufficient lifetime quenching is found to have a significant influence on laser performance  相似文献   

3.
Room-temperature CW laser operation at 1.55 μm of Yb:Er:Ca2Al2SiO7 (CAS) single crystal pumped at 940 nm and 975 nm has been achieved for the first time. Introduction of a third doping ion, Ce3+, decreases the Er 3+4I11/2 excited-state lifetime and improves the laser properties. For Yb:Er:Ce:CAS single crystal, a maximum of 20 mW output power is produced for 285 mW absorbed power. With this material, a low threshold of 20 mW and a relatively high slope efficiency of ~5.5% are obtained. Preliminary results indicate possible improvement in the near future. Experimental threshold values and laser properties of CAS crystals with various compositions are in good agreement with calculations, performed using the rate-equations modeling. Comparison with a Yb:Er:phosphate glass laser is also presented  相似文献   

4.
The green (544-549 nm) Ho-doped fluorozirconate (ZBLAN) glass fiber laser, pumped in the red (λ~6;15 nm) by a high-power (~30 mW) InGaAlP laser diode or a ring dye-laser, has been characterized with regard to power conversion efficiency, fiber core-diameter and length, cavity output coupling, and pump acceptance bandwidth. Fibers doped with ~1200 ppm (by weight) of Ho and having core diameters of 1.7, 3, and 11 μm, and lengths ranging from 12.5 to 86 cm, have been studied in Fabry-Perot resonators having output couplings ranging from 1.545 to 96%. For a 1.7-μm core-diameter fiber, 21 cm in length, the threshold-launched pump power for the diode-pumped fiber laser is 1.9 and 3.5 mW for cavity output couplings of 1.5% and 24%, respectively. These values are the lowest for any upconversion-pumped fiber laser reported to date. Also, the noise and threshold-pumping power properties of the diode-pumped fiber laser are superior to those for its dye-laser-pumped counterpart. The highest laser slope efficiency (>22% with respect to launched pump power) was measured for a 3-μm core-diameter fiber and a cavity output coupling of 24%. The spectral interval over which the launched threshold pump power for this laser is <10 mW is almost 20 nm (637-656 nm). Studies of the fiber laser waveform as a function of pump power reveal competition for population between the 5S2 and 5F4 states and among the Stark sublevels of the 5F4 manifold. Also, measurements of the output power on individual laser lines of the 5F4, 5S25I8 (ground) transitions of Ho3+:ZBLAN as a function of pump power demonstrate the existence of a loss mechanism at the fiber laser wavelength, presumably due to absorption from ground or the 5Iy, 6S2 or 5F4 excited states of the ion  相似文献   

5.
Based on recently published spectroscopic measurements of the relevant energy-transfer parameters, we performed a detailed analysis of the population mechanisms and the characteristics of the output from Er 3+-singly-doped and Er3+, Pr3+-codoped ZBLAN fiber lasers operating at 3 μm, for various Er3+ concentrations and pump powers. Whereas both approaches resulted in similar laser performance at Er3+ concentrations <4 mol.% and pump powers <10 W absorbed, it is theoretically shown here that the Er3+-singly-doped system will be advantageous for higher Er3+ concentrations and pump powers. In this case, energy recycling by energy-transfer upconversion from the lower to the upper laser level can increase the slope efficiency to values greater than the Stokes efficiency, as is associated with a number of Er3+-doped crystal lasers. Output powers at 3 μm on the order of 10 W are predicted  相似文献   

6.
A novel method of generating 1.634-μm laser action from Er:YAG crystals pumped intracavity by an Er:glass laser emitting at 1.549 μm is described. Operation of the Er:glass laser at 1.549 μm (red shifted from the standard 1.532 μm, but with comparable output) at 500 K was obtained using mirrors with tailored spectral reflectivities. Several Er:YAG crystals ranging in concentration from 0.3% to 2% and in length from 1 cm to 8 cm were lased in the intracavity pumping arrangement. All the Er:YAG crystals lased in the 4I13/2 :Y1(6544 cm-1)-4I15/2:Z6(424 cm -1) 1.634-μm transition at 300 K  相似文献   

7.
This paper describes the amplification characteristics of gain-flattened Er3+-doped fiber amplifiers (EDFAs) by using 0.98-μm and 1.48-μm band pumping for a 1.58-μm band WDM signal. Silica-based Er3+-doped fiber (S-EDF) and fluoride-based Er 3+-doped fiber (F-EDF) have gain-flattened wavelength ranges from 1570 to 1600 nm and from 1565 to 1600 nm, respectively, and exhibit uniform gain characteristics with gain excursions of 0.7 and 1.0 dB, and the figure of merit of the gain flatness (gain excursion/average signal gain) of 3 and 4.3%, respectively, for an eight-channel signal in the 1.58-μm band. We show that 1.48-μm band pumping has a better quantum conversion efficiency and gain coefficient, and that 0.98-μm band pumping is effective for improving the noise characteristics. We also show that the EDFAs consisting of two cascaded amplification units pumped in the 0.98-μm and 1.48-μm bands are effective in constructing low-noise and high-gain 1.58-μm band amplifiers  相似文献   

8.
3.6-Gb/s optical soliton transmission using a gain-switched 1.55-μm distributed-feedback laser diode and a Ti:LiNbO3 intensity modulator is demonstrated. An Er3+-doped fiber amplifier and a Raman amplifier, both pumped by 1.48-μm laser diodes, are used for achieving intense optical pulses and fiber-loss compensation, respectively. The intensity-modulation direct-detection optical receiver of a commercial F-1.6 G system is used to measure the bit-error rate  相似文献   

9.
A spectrally narrowed widely tunable Ce/sup 3+/: Er/sup 3+/-codoped fluorozirconate (ZBLAN) fiber laser with a continuous-wave laser diode pumping at 975-nm pumping is demonstrated. Wide tunable range over 120 nm (1490-1610 nm) is attained by using a diffraction grating combined with a tuning mirror in the Ce/sup 3+/: Er/sup 3+/-ZBLAN fiber laser cavity. Rate-equation model analysis shows that the tunable range can expand further by using a wavelength-dependent reflectivity cavity mirror.  相似文献   

10.
The performance of an Er3+-doped fiber amplifier pumped by 0.98 μm InGaAs laser diodes (LDs) is reported. By using a fiber with low Er3+ content and optimizing the fiber length, a maximum signal gain of 37.8 dB at 30-mW pump power was realized at a signal wavelength of 1.536 μm. A maximum gain coefficient of 1.9 dB/mW at 14 mW pump power was achieved. It was found that the fiber amplifier pumped by the 0.98-μm LDs is twice as efficient as that pumped by 1.48-μm LDs, from the viewpoint of both required fiber length and the attained gain  相似文献   

11.
We report the observation of a stable output power of 204 mW in a Tm3+ : ZBLAN upconversion blue fiber laser, which we believe to be the highest reported to date as being stable in the long term. For the first time, we also present results of the dynamics of a real-time photobleaching of the color centers by an external laser source during laser oscillation. The dependence of the photoinduced absorption on the photobleaching power is also investigated. The total average photoinduced absorption was estimated at 2.7 dB/m  相似文献   

12.
The gain and saturation intensity of the green Ho-doped fluorozirconate (ZBLAN) glass fiber amplifier and laser, pumped in the red (643 ⩽ λp ⩽ 649 nm; 5F5 5I8), have been measured. For a 2.4-μm core diameter fiber 45 cm in length, the single-pass gain at 543.4 nm exceeds 12 dB for 90 mW of pump power at 643.5 nm. The saturation power for the 5F4, 5S2 5I8 lasing transition was determined from gain measurements to be 970 ± 175 μW, which corresponds to a saturation intensity of 19.8 ± 3.5 kW · cm-2 , and a stimulated emission cross section approximately one order of magnitude larger than theoretical estimates  相似文献   

13.
The concentration quenching mechanism in Pr3+-doped fluoride fiber operating at the 1.3-μm band is investigated. It is confirmed that the cooperative upconversion process causes signal gain saturation with pump power and degrades the gain characteristics of Pr 3+-doped fluoride fiber at a concentration of 1000 p.p.m. The reduction in gain coefficient due to cooperative upconversion is almost suppressed at a concentration of 500 p.p.m. A Pr3+ concentration of 500 p.p.m. is a practical concentration for the fabrication of efficient Pr3+-doped fluoride fiber amplifiers  相似文献   

14.
Er3+/Ce3+ co-doped tellurite glasses with composition of TeO2-GeO2-Li2O-Nb2O5 were prepared using conventional melt-quenching technique for potential applications in Er3+-doped fiber amplifier (EDFA). The absorption spectra, up-conversion spectra and 1.53 µm band fluorescence spectra of glass samples were measured. It is shown that the 1.53 µm band fluorescence emission intensity of Er3+-doped tellurite glass fiber is improved obviously with the introduction of an appropriate amount of Ce3+, which is attributed to the energy transfer (ET) from Er3+ to Ce3+. Meanwhile, the 1.53 µm band optical signal amplification is simulated based on the rate and power propagation equations, and an increment in signal gain of about 2.4 dB at 1 532 nm in the Er3+/Ce3+ co-doped tellurite glass fiber is found. The maximum signal gain reaches 29.3 dB on a 50 cm-long fiber pumped at 980 nm with power of 100 mW. The results indicate that the prepared Er3+/Ce3+ co-doped tellurite glass is a good gain medium applied for 1.53 µm broadband and high-gain EDFA.  相似文献   

15.
The crown-like zinc oxide(Zn O)samples,which are composed of a hexagonal cap and a tower-like shaft,are prepared by vapor transport method.The hexagonal cap,working as a whispering gallery mode(WGM)resonant cavity,demonstrates density-dependent ultraviolet(UV)lasing emission with a broadened and squared photoluminescence(PL)profile under UV excitation at 355 nm.Theoretical analyses based on Fermi golden rule show that the broadened spectrum profile results from the special optical mode density characteristics in a WGM micro-cavity,which is in agreement with the observed results.  相似文献   

16.
This paper presents a guideline for designing an optimum low-threshold 1.55-μm graded-index (GRIN) separate confinement-heterostructure (SCH) strained InGaAsP single quantum-well (SQW) laser diode (LD). The guideline was formulated based on the results of numerical and experimental analysis. After calculating the sheet carrier density at the lasing threshold, the guideline was obtained by considering the tradeoff between carrier and optical confinements in the well: the GRIN layer energy gap should be varied parabolically from InP to InGaAsP having a band gap wavelength of 1.1 μm to inject a large number of carriers into the well, and the thickness of one side of the GRIN layer should be more than 300 nm to keep a strong optical confinement. The GRIN SQW LD designed using the guideline has a Jth as low as 98 A/cm2 at a cavity length of 5 mm, which proves the guideline is effective for designing low-threshold 1.55-μm GRIN SQW LDs  相似文献   

17.
Spectroscopic determination of laser cross-section and quantum efficiency of the Er3+ laser transition at 2.7 μm are reported for the first time for a fluoride glass of the ZBLAN type. Comparisons with crystal values and other glass compositions are given. Emission spectra of Er3+ at 2.7 μm are also presented for the first time  相似文献   

18.
The first demonstration of a one-step-growth vertical-cavity surface-emitting laser (VCSEL) at 1.56 μm by low-pressure metal-organic vapor phase epitaxy in the InGaAlAs (λgap=1.43 μm)-InAlAs system lattice matched to InP is presented. The VCSEL's threshold current density was 7.5 kA/cm2 and pulsed lasing had been obtained up to +55°C for 45-μm diameter proton implanted devices. This material system represents a high potential for continuous-wave VCSELs at 1.55-μm wavelength using a simple approach for large-scale industrial production  相似文献   

19.
The results from experiments relating to the CW operation of a Tm-Ho-doped silica fiber laser which is pumped with the fundamental output from a Nd:YAG laser are presented. The measured maximum output power from the fiber laser of 11 mW was generated at a slope efficiency of approximately 1.8% for a fiber length of 0.574 m and an output coupling of 10%. An output wavelength of 2170 nm (one of the longest lasing wavelengths to be achieved with the use of a silica host material) was also generated from the Tm-Ho-doped fiber laser when the fiber length was extended to 1.240 m and a 5% output coupling incorporated. The reduced efficiency and increased threshold for the Nd:YAG-pumped Tm-Ho-doped silica fiber laser when compared to previous reports of Ti:sapphire pumping is discussed in detail with the aid of a comprehensive numerical model. The numerical model solves the rate equations for the Tm-Ho-doped silica fiber laser system by taking into account the cross relaxation, energy transfer, and upconversion mechanisms, and it utilizes all published spectroscopic parameters relevant to Tm-Ho-doped silica and Tm-Ho:ZBLAN glass materials. It is established that the excited state absorption relevant to Nd:YAG pumping severely depletes the 3H4 energy level of Tm3+ and consequently hinders the energy transfer process to the 5I7 energy level of Ho3+. Optimum dopant concentrations are also established for both Nd:YAG and Ti:sapphire pump schemes  相似文献   

20.
A generalized model for 3-μm (4I11/2 4I13/2)Er lasers is proposed. The essential energy transfer processes present in the single-doped Er 3+ systems (up-conversion from 4I13/2, up-conversion from 4 I11/2, cross-relaxation from 4S 3/2), as well as those present in Cr3+ codoped Er 3+ systems, are taken into account. In the frame of this model, the main features of 3 μm Er3+ lasers, such as long pulse or CW operation, the change of emission wavelength as a function of pumping conditions, and the effects of codoping with Ho3+ or Tm3+ ions, are explained  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号