首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
We propose a system that combines a seal-less planar solid oxide fuel cell (SOFC) stack and polymer electrolyte fuel cell (PEFC) stack. In the proposed system, fuel for the SOFC (SOFC fuel) and fuel for the PEFC (PEFC fuel) are fed to each stack in parallel. The steam reformer for the PEFC fuel surrounds the seal-less planar SOFC stack. Combustion exhaust heat from the SOFC stack is used for reforming the PEFC fuel. We show that the electrical efficiency in the SOFC–PEFC system is 5% higher than that in a simple SOFC system using only a seal-less planar SOFC stack when the SOFC operation temperature is higher than 973 K.  相似文献   

2.
《Journal of power sources》2006,159(2):836-845
We evaluate two kinds of solid-oxide-fuel-cell (SOFC)–polymer-electrolyte-fuel-cell (PEFC) combined systems by numerical simulation to investigate the effect of the fuel feeding method. In one, fuel for the system is reformed by using exhaust heat from the SOFC and is separately supplied to the SOFC and PEFC (parallel SOFC–PEFC system). In the other, fuel is fed to the SOFC first and then SOFC exhaust fuel is fed to the PEFC (series SOFC–PEFC system). The quality of the fuel gas in the SOFC is better in the latter system, whereas the quality of the fuel gas in the PEFC is better in the former. We demonstrate that larger PEFC output can be obtained in the parallel SOFC–PEFC system, since more steam, which is included in the SOFC anode exhaust gas, can be used for the reforming of the fuel for the PEFC. We show that the series SOFC–PEFC system provides higher electrical efficiency because the fuel gas quality has a stronger influence on the electromotive force in the SOFC than in the PEFC.  相似文献   

3.
《Journal of power sources》2004,137(2):206-215
We evaluated the performance of system combining a solid oxide fuel cell (SOFC) stack and a polymer electrolyte fuel cell (PEFC) stack by a numerical simulation. We assume that tubular-type SOFCs are used in the SOFC stack. The electrical efficiency of the SOFC–PEFC system increases with increasing oxygen utilization rate in the SOFC stack. This is because the amount of exhaust heat of the SOFC stack used to raise the temperature of air supplied to it decreases as its oxygen utilization rate increases and because that used effectively as the reaction heat of the steam reforming reaction of methane in the stack reformer increases. The electrical efficiency of the SOFC–PEFC system at 190 kW ac is 59% (LHV), which is equal to that of the SOFC-gas turbine combined system at 1014 kW ac.  相似文献   

4.
A solid oxide fuel cell (SOFC)–polymer electrolyte fuel cell (PEFC) combined system was investigated by numerical simulation. Here, the effect of the current densities in the SOFC and the PEFC stacks on the system's performance is evaluated under a constant fuel utilization condition. It is shown that the SOFC–PEFC system has an optimal combination of current densities, for which the electrical efficiency is highest. The optimal combination exists because the cell voltage in one stack increases and that of the other stack decreases when the current densities are changed. It is clarified that there is an optimal size of the PEFC stack in the parallel-fuel-feeding-type SOFC–PEFC system from the viewpoint of efficiency, although a larger PEFC stack always leads to higher electrical efficiency in the series-fuel-feeding-type SOFC–PEFC system. The 40 kW-class PEFC stack is suitable for the 110 kW-class SOFC stack in the parallel-fuel-feeding type SOFC–PEFC system.  相似文献   

5.
燃料电池及其发展概况   总被引:4,自引:0,他引:4  
吴忻 《动力工程》2001,21(2):1172-1175
概述了燃料电池原理并计算了氢氧型燃料电池可逆条件下电池电压和效率。介绍了国外熔融碳酸盐型燃料电池(MCFC)、固体氧化物型燃料电池(SOFC)和固体高分子型燃料电池(PEFC)的最新进展,国内的发展状况。  相似文献   

6.
《Journal of power sources》2006,158(2):1290-1305
The evaluation of solid oxide fuel cell (SOFC) combined heat and power (CHP) system configurations for application in residential dwellings is explored through modeling and simulation of cell-stacks including the balance-of-plant equipment. Five different SOFC system designs are evaluated in terms of their energetic performance and suitability for meeting residential thermal-to-electric ratios. Effective system concepts and key performance parameters are identified. The SOFC stack performance is based on anode-supported planar geometry. A cell model is scaled-up to predict voltage–current performance characteristics when served with either hydrogen or methane fuel gas sources. System comparisons for both fuel types are made in terms of first and second law efficiencies. The results indicate that maximum efficiency is achieved when cathode and anode gas recirculation is used along with internal reforming of methane. System electric efficiencies of 40% HHV (45% LHV) and combined heat and power efficiencies of 79% (88% LHV) are described. The amount of heat loss from small-scale SOFC systems is included in the analyses and can have an adverse impact on CHP efficiency. Performance comparisons of hydrogen-fueled versus methane-fueled SOFC systems are also given. The comparisons indicate that hydrogen-based SOFC systems do not offer efficiency performance advantages over methane-fueled SOFC systems. Sensitivity of this result to fuel cell operating parameter selection demonstrates that the magnitude of the efficiency advantage of methane-fueled SOFC systems over hydrogen-fueled ones can be as high as 6%.  相似文献   

7.
Characteristics of molten carbonate fuel cell (MCFC) were critically compared to these of polymer electrolyte membrane fuel cell (PEMFC), alkaline fuel cell (AFC), phosphoric acid fuel cell (PAFC) and solid oxide fuel cell (SOFC). In comparison to the other fuel cells, the MCFC operates with the lowest current densities due to limited zones of effective electrode reactions and low solubilities of oxygen and hydrogen in molten carbonates; also it has a thickest electrodes–electrolyte assembly. In consequence, the applications of MCFC are almost limited to stationary power generators. Although the MCFC stationary power generators have now approached high technological level of precommercialization, in the future they may face a serious contest from SOFC and PEMFC, for which improvement of operational parameters is believed to be achieved easier.  相似文献   

8.
An energy analysis of solid oxide fuel cell (SOFC) power systems with gas recycles fed by natural gas is carried out. Simple SOFC system, SOFC power systems with anode and cathode gas recycle respectively and SOFC power system with both anode and cathode gas recycle are compared. Influences of reforming rate, air ratio and recycle ratio of electrode exhaust gas on performance of SOFC power systems are investigated. Net system electric efficiency and cogeneration efficiency of these power systems are given by a calculation model. Results show that internal reforming SOFC power system can achieve an electrical efficiency of more than 44% and a system cogeneration efficiency including waste heat recovery of 68%. For SOFC power system with anode gas recycle, an electrical efficiency is above 46% and a cogeneration efficiency of 88% is obtained. In the case of cathode gas recycle, an electrical efficiency and a cogeneration efficiency is more than 51% and 78% respectively. Although SOFC system with both anode and cathode gas is more complicated, the electrical efficiency of it is close to 52%.  相似文献   

9.
燃料电池发展现状与应用前景   总被引:9,自引:0,他引:9  
介绍了各种类型燃料电池(碱性燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池,磷酸燃料电池及质子交换膜燃料电池)的技术进展,电池性能及其特点。其中着重介绍了当今国际上应用较广泛,技术较为成熟的磷酸燃料电池和质子交换膜燃料电池。对燃料电池的应用前景进行探讨,并对我国的燃料电池研究提出了一些建议。  相似文献   

10.
An energy analysis of three typical solid oxide fuel cell (SOFC) power systems fed by methane is carried out with detailed thermodynamic model. Simple SOFC system, hybrid SOFC‐gas turbine (GT) power system, and SOFC‐GT‐steam turbine (ST) power system are compared. The influences of air ratio and operative pressure on the performance of SOFC power systems are investigated. The net system electric efficiency and cogeneration efficiency of these power systems are given by the calculation model. The results show that internal reforming SOFC power system can achieve an electrical efficiency of more than 49% and a system cogeneration efficiency including waste heat recovery of 77%. For SOFC‐GT system, the electrical efficiency and cogeneration efficiency are 61% and 80%, respectively. Although SOFC‐GT‐ST system is more complicated and has high investment costs, the electrical efficiency of it is close to that of SOFC‐GT system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Three configurations of solid oxide fuel cell (SOFC) micro-combined heat and power (micro-CHP) systems are studied with a particular emphasis on the application for single-family detached dwellings. Biogas is considered to be the primary fuel for the systems studied. In each system, a different method is used for processing the biogas fuel to prevent carbon deposition over the anode of the cells used in the SOFC stack. The anode exit gas recirculation, steam reforming, and partial oxidation are the methods employed in systems I–III, respectively. The results predicted through computer simulation of these systems confirm that the net AC electrical efficiency of around 42.4%, 41.7% and 33.9% are attainable for systems I–III, respectively. Depending on the size, location and building type and design, all the systems studied are suitable to provide the domestic hot water and electric power demands for residential dwellings. The effect of the cell operating voltage at different fuel utilization ratios on the number of cells required for the SOFC stack to generate around 1 kW net AC electric power, the thermal-to-electric ratio (TER), the net AC electrical and CHP efficiencies, the biogas fuel consumption, and the excess air required for controlling the SOFC stack temperature is also studied through a detailed sensitivity analysis. The results point out that the cell design voltage is higher than the cell voltage at which the minimum number of cells is obtained for the SOFC stack.  相似文献   

12.
The performance of three solid oxide fuel cell (SOFC) systems, fuelled by biogas produced through anaerobic digestion (AD) process, for heat and electricity generation in wastewater treatment plants (WWTPs) is studied. Each system has a different fuel processing method to prevent carbon deposition over the anode catalyst under biogas fuelling. Anode gas recirculation (AGR), steam reforming (SR), and partial oxidation (POX) are the methods employed in systems I-III, respectively. A planar SOFC stack used in these systems is based on the anode-supported cells with Ni-YSZ anode, YSZ electrolyte and YSZ-LSM cathode, operated at 800 °C. A computer code has been developed for the simulation of the planar SOFC in cell, stack and system levels and applied for the performance prediction of the SOFC systems. The key operational parameters affecting the performance of the SOFC systems are identified. The effect of these parameters on the electrical and CHP efficiencies, the generated electricity and heat, the total exergy destruction, and the number of cells in SOFC stack of the systems are studied. The results show that among the SOFC systems investigated in this study, the AGR and SR fuel processor-based systems with electrical efficiency of 45.1% and 43%, respectively, are suitable to be applied in WWTPs. If the entire biogas produced in a WWTP is used in the AGR or SR fuel processor-based SOFC system, the electricity and heat required to operate the WWTP can be completely self-supplied and the extra electricity generated can be sold to the electrical grid.  相似文献   

13.
In this paper a direct internal reforming solid oxide fuel cell (DIR-SOFC) is modeled thermodynamically from the energy point of view. Syngas produced from a gasification process is selected as a fuel for the SOFC. The modeling consists of several steps. First, equilibrium gas composition at the fuel channel exit is derived in terms mass flow rate of fuel inlet, fuel utilization ratio, recirculation ratio and extents of steam reforming and water–gas shift reaction. Second, air utilization ratio is determined according to the cooling necessity of the cell. Finally, terminal voltage, power output and electrical efficiency of the cell are calculated. Then, the model is validated with experimental data taken from the literature. The methodology proposed is applied to an intermediate temperature, anode-supported planar SOFC operating with a typical gas produced from a pyrolysis process. For parametric analysis, the effects of recirculation ratio and fuel utilization ratio are investigated. The results show that recirculation ratio does not have a significant effect for low current density conditions. At higher current densities, increasing the recirculation ratio decreases the power output and electrical efficiency of the cell. The results also show that the selection of the fuel utilization ratio is very critical. High fuel utilization ratio conditions result in low power output and air utilization ratio but higher electrical efficiency of the cell.  相似文献   

14.
High efficiency reforming is a key parameter of high temperature stationary fuel cell systems. In this study, a planar heat exchanger steam reformer (PHESR) was integrated with a catalytic combustor in order that the unused energy of the anode off-gas is delivered for heating and reforming. The PHESR was designed to use the anode off-gas of the externally reformed SOFC system because it has an efficiency problem. In the PHESR reactor, the heat is transferred from the catalytic burner to the reformer that has the smallest gradient of temperature difference between the two reactors.  相似文献   

15.
《Journal of power sources》1996,58(2):153-176
After 25 years of effort, the phosphoric acid fuel cell (PAFC) is approaching commercialization as cell stack assemblies (CAS) show convincingly low degradation and its balance-of-plant (BOP) achieves mature reliability. A high present capital cost resulting from limited cumulative production remains an issue. The primary PAFC developer in the USA (International Fuel Cells, IFC) has only manufactured 40 MW of PAFC components to date, the equivalent of a single large gas turbine aero-engine or 500 compact car engines. The system is therefore still far up the production learning curve. Even so, the next generation of on-site 40% electrical efficiency (LHV) combined heat-and-power (CHP) PAFC system was available for order from IFC in 1995 at US$ 3000/kW (1995). To effectively compete in the marketplace with diesel generators, the dispersed cogeneration PAFC must cost approximately US$ 1550/kW (1995) in the USA and Europe. At somewhat lower costs than this, dispersed cogeneration PAFCs will compete with large combined-cycle generators. However, in Japan, costs greater than US$ 2000/kW will be competitive, based on the late-1995 trade exchange rate of 100–105 Yen/US $). The perceived advantages of fuel cell technologies over developments of more conventional generators (e.g., ultra-low emissions, siting) are not strong selling points in the marketplace. The ultimate criterion is cost. Cost reduction is now the key to market penetration. This must include reduced installation costs, for which the present goal is US$ 385/kW (1995). How further capital cost reductions can be achieved by the year 2000 is discussed. Progress to date is reviewed, and the potential for pressurized electric utility PAFC units is determined. Markets for high-temperature fuel cell system (molten carbonate, MCFC, and solid oxide, SOFC), which many consider to be 20 and 30 years, respectively, behind the PAFC, are discussed. Their high efficiency and high-quality waste heat should make them attractive if technical progress and costs are acceptable. Commercialization of the proton-exchange membrane fuel cell (PEMFC) system is considered for stationary and mobile applications.  相似文献   

16.
In order to improve the power generation efficiency of fuel cell systems employing liquid fuels, a hybrid system consisting of solid oxide fuel cell (SOFC) and proton exchange membrane fuel cell (PEMFC) is proposed. Utilize the high temperature heat generated by SOFC to reform as much methanol as possible to improve the overall energy efficiency of the system. When SOFC has a stable output of 100 kW, the amount of hydrogen after reforming is changed by changing the methanol flow rate. Three hybrid systems are proposed to compare and select the best system process suitable for different situations. The results show that the combined combustion system has the highest power generation, which can reach 350 kW and the total electrical efficiency is 57%. When the power of the tail gas preheating system is 160 kW, the electrical efficiency can reach 75%. The PEM water preheating system has the most balanced performance, with the electric power of 300 kW and the efficiency of 66%.  相似文献   

17.
Natural gas is a cheap and abundant fuel for solid oxide fuel cell (SOFC), generally integrating the SOFC system with methane pre-treating system for improving the stability of SOFC. In this paper, the accurate effects of methane processing strategy on fuel composition, electrical efficiency and thermal efficiency of SOFC are investigated based on the thermodynamic equilibrium. Steam reforming of methane is an endothermic process and can produce 3 mol of H2 and 1 mol of CO from 1 mol of methane, and thus the electrical efficiency of SOFC is high at the same O/C ratio and equivalent fuel utilization, whereas the thermal efficiency is low. On the contrary, partial oxidation of methane is an exothermal process and only produces 2 mol of H2 and 1 mol of CO from 1 mol of methane, and thus the electrical efficiency of SOFC is low at the same O/C ratio and equivalent fuel utilization, whereas the thermal efficiency is high. When the O/C ratio is 1.5, the electrical efficiency of SOFC is 55.3% for steam reforming of methane, while 32.7% for partial oxidation of methane. High electrical efficiency of SOFC can be achieved and carbon deposition can be depressed by selecting suitable O/C ratio from methane pretreatment according to the accurate calculation and analysis of effects of different methane processing strategies on the electrical efficiency and thermal efficiency of SOFC.  相似文献   

18.
The solid oxide fuel cell (SOFC) is one of the most promising fuel cells for direct conversion of chemical energy to electrical energy with the possibility of its use in co-generation systems because of the high temperature waste heat. Various mathematical models have been developed for three geometric configurations (tubular, planar, and monolithic) to solve transport equations coupled with electrochemical processes to describe the reaction kinetics including internal reforming chemistry in SOFCs. In recent years, considerable progress has been made in modeling to improve the design and performance of this type of fuel cells. The numbers of the contributions on this important type of fuels have been increasing rapidly. The objective of this paper is to summarize the present status of the SOFC modeling efforts so that unresolved problems can be identified by the researchers.  相似文献   

19.
燃料电池技术进展   总被引:6,自引:0,他引:6  
评价了国际燃料电池技术的发展,总结了燃料电池在工业中特别是汽车中的应用,燃料电池已成为我国能源领域最重要的研究项目之一,AFC,PAFC,MCFC,SOFS和PEMFC燃料电池的制造技术已掌握,但燃料电池的应用程序和技术水平还很低。  相似文献   

20.
A microgrid, with little environmental impact, is developed by introducing a combined SOFC (solid oxide fuel cell) and PEFC (proton exchange membrane fuel cell) system. Although the SOFC requires a higher operation temperature compared to the PEFC, the power generation efficiency of the SOFC is higher. However, if high temperature exhaust heat may be used effectively, a system with higher total power generation efficiency can be built. Therefore, this paper investigates the operation of a SOFC–PEFC combined system, with time shift operation of reformed gas, into a microgrid with 30 houses in Sapporo, Japan. The SOFC is designed to correspond to base load operation, and the exhaust heat of the SOFC is used for production of reformed gas. This reformed gas is used for the production of electricity for the PEFC, corresponding to fluctuation load of the next day. Accordingly, the reformed gas is used with a time shift operation. In this paper, the relation between operation method, power generation efficiency, and amount of heat storage of the SOFC–PEFC combined system to the difference in power load pattern was investigated. The average power generation efficiency of the system can be maintained at nearly 48% on a representative day in February (winter season) and August (summer season).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号