首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the oxidation and reaction kinetics of biocide o-phenylphenol (o-PP) during ozonation. The second-order rate constants for direct reaction of molecular ozone with o-PP were determined in homogenous system using classical and competition kinetics. Obtained values of the second-order rate at pH 2 are equal to (3.79 ± 0.23)?×?102 M?1 s?1 and (4.42 ± 0.64)?×?102 M?1 s?1, for the two methods, respectively. The rate constant for the dissociated form of o-PP was also determined. It was found that the rate constants for the reaction of o-PP with ozone increase significantly with increasing pH.  相似文献   

2.
Oxidation kinetics of selected pharmaceutical compounds and their degradation during ozonation of secondary treated municipal wastewater effluent (MWWE) was investigated. The apparent second-order rate constants for the reaction between chlorotetracycline (CTC), enrofloxacin (ENR), gemfibrozil (GEM) and ozone ranged between 6.82 – 52.7 × 104 M?1s?1. The measured second-order hydroxyl radical rate constants were several orders of magnitude higher at 8.4 × 109 – 13.1 × 109 M?1s?1 with a reactivity sequence of GEM > CTC > ENR. Overall degradation of CTC, ENR and GEM in secondary treated municipal wastewater effluent was >76 % at ozone doses of 0.33 mg O3/mg DOC or higher.  相似文献   

3.
Ozone/hydrogen peroxide batch treatment was utilized to study the degradation of the steroidal hormone estrone (E1). The competition kinetics method was used to determine the rate constants of reaction for direct ozone and E1, and for hydroxyl radicals and E1 at three pH levels (4, 7, and 8.5), three different molar O3/H2O2 ratios (1:2, 2:1, and 4:1) and a temperature about 20°C. The average second-order rate constants for direct ozone-E1 reaction were determined as 6.2?×?103?±?3.2?×?103 M?1s?1, 9.4?×?105?±?2.7?×?105 M?1s?1, and 2.1?×?107?±?3.1?×?106 M?1s?1 at pH 4, 7, and 8.5, respectively. It was found that pH had the greatest influence on the reaction rate, whereas O3/H2O2 ratio was found to be slightly statistically significant. For the hydroxyl radical-E1 reaction, apparent rate constants ranged from 1.1?×?1010 M?1s?1 to 7.0?×?1010 M?1s?1 with an average value of 2.6?×?1010 M?1s?1. Overall, O3/H2O2 is shown to be an effective treatment for E1.  相似文献   

4.
The modified Staehelin, Buhler, and Hoigné model for aqueous ozone decomposition was tested over a wide range of hydroxyl radical scavenger concentrations at a pH of 7.1–7.2. Results from these experiments showed that the modified model appeared to underpredict the residual ozone concentration and overpredict the residual hydroxyl radical probe compound, tetrachloroethylene, concentration. The modified Staehelin, Buhler, and Hoigné model was recalibrated and two rate constants, the rate constant of the initiation reaction of ozone decomposition of hydroxide ion and the rate constant of the promotion reaction of ozone decomposition by hydroxyl radical, were reestimated. The new estimates of these rate constants are 1.8 × 102 M?1s?1 (initiation reaction) and 2 × 108 M?1s?1 (promotion reaction), while the values estimated by Staehelin, Buhler, and Hoigné for these rate constants are 70 M?1s?1 (initiation reaction) and 2 × 109 M?1s?1 (promotion reaction). The recalibrated-modified model was tested and validated by conducting experiments at different pH values and hydroxyl radical scavenger concentrations. Also, the effect of phosphate buffer as a hydroxyl radical scavenger was investigated at phosphate buffer concentrations of 10 mM and 1 mM.  相似文献   

5.
The ozonation of the quinolone antibiotic ofloxacin in water has been investigated with focus on kinetic parameters determination. The apparent stoichiometric factor and the second-order rate constants of the reactions of ozone and hydroxyl radical with ofloxacin were determined at 20 °C in the pH range of 4–9. The apparent stoichiometric factor was found to be about 2.5 mol O3/mol ofloxacin regardless of the pH. The rate constant of the reaction between ozone and ofloxacin was determined by a competitive method (pH = 6–9) and a direct ozonation method (pH = 4). It was found that this rate constant increases with pH due to the dissociation of ofloxacin in water. The direct rate constants of ofloxacin species were determined to be 1.0?×?102, 4.3?×?104 and 3.7?×?107 for cationic, neutral-zwitterion and anionic species, respectively. Accordingly, the attack of ozone to ofloxacin mainly takes place at the tertiary amine group of the piperazine ring, though some reactivity is also due to the quinolone structure and oxazine substituent. The rate constant of the reaction between ofloxacin and hydroxyl radical was obtained from UV/H2O2 photodegradation experiments. It was found that this rate constant varies with pH from 3.2?×?109 at pH 4 to 5.1?×?109 at pH 9.  相似文献   

6.
7.
This work reports the experimental results of kinetics study of n-butylparaben (BP) degradation in H2O2/UV systems. A pseudo–steady-state and competition kinetic approaches were used to determine the reaction rate constants between the BP and ?OH. In competition kinetics atrazine (2.30?×?109 M?1?s?1) was used as a reference compound. The measured rate constants for ?OH reaction with BP ranged from (3.84 ± 0.12)?×?109 M?1?s?1 to (8.56 ± 0.90)?×?109 M?1?s?1 depending on solution pH and temperature. Values of the rate constant obtained using different methods were in good agreement. The calculated activation energy was equal to 19.01 ± 1.02 kJ mol?1.  相似文献   

8.
Recent occurrences of pharmaceutical antibiotics in surface water, drinking water, and wastewater systems have gained significant attention due to their potential threats to human health. This study determined the absolute second-order rate constants of ozone with two amine-based antibiotics, namely, lincomycin and spectinomycin, using the stopped-flow technique under controlled ionic strength, buffer, and temperature. Results indicate that ozone reacts quickly with the selected antibiotics, and the reaction rate significantly depends on solution pH. For lincomycin, ozone attacks its free amine group and sulfur group with absolute rate constants of 2.76 × 106 M?1·s?1 (for neutral form) and 3.26 × 105 M?1·s?1 (for monoprotonated form), respectively. For spectinomycin, ozone attacks two free amine groups with absolute rate constants of 1.27 × 106 M?1·s?1 (for neutral form) and 3.30 × 105 M?1·s?1 (for monoprotonated form), respectively. These rate constants have been corrected to zero ionic strength. Protonated amine is nonreactive toward ozone. Model prediction indicates that lincomycin and spectinomycin can be effectively transformed by ozonation processes around neutral pH.  相似文献   

9.
10.
Ozonation of purine and pyrimidine bases and of carbohydrates was studies in laboratory experiments. The results showed that nucleobases are much more reactive with molecular ozone in aqueous solution than carbohydrates. Second order rate constants for direct reaction of ozone on purines (adenine and guanine) and on pyrimidines (cytosine, thymine and uracil) ranged from 0.76 × 103 to 6.8 × 103 M-1s-1at 2°C. The difference of reactivity between these solutes may be attributed to their substituents. As far as carbohydrates are concerned, direct reactions of ozone are very slow k03 ? 0.1 – 0.3 M-1s-1 at 20°C, and the results indicated that free radical reactions are predominant in the degradation pathway of carbohydrates by ozone. Some ozonation by-products of monosaccharides (glucose, xylose) and disaccharides (cellobiose) also were identified in this study by means of GC/MS analyses.  相似文献   

11.
The contribution of ozone and hydroxyl radical to the formation of bromate ion was investigated in a continuous flow reactor. Experiments were conducted under a wide range of ozone dose (0.7 ~ 3.8 mgL), pH (6.5 ~ 8.5), and t-butanol concentration (0 ~ 0.5 mM). The formation of bromate ion was found to depend on radical reaction pathway, because the amount of bromate ion formed increased with pH and decreased with t-butanol, a radical scavenger, even when dissolved ozone concentrations were almost the same. In fact, the amount of bromate ion formed was reduced by 90% in the presence of t-butanol. Furthermore, the formation of bromate ion occurred even when dissolved ozone was not significantly detected in the presence of organic matter (TOC of 1 mgCL). The second-order reaction rate constant of hydroxyl radical with bromide ion, k HO,Br? of 1.7 × 109 (M?1s?1), was obtained on the assumption that the reactions of bromide ion and t-butanol with hydroxyl radical were competitive with each other in the presence of t-butanol and that the formation of bromate ion depended on the reaction of bromide ion with hydroxyl radical. Therefore, it is concluded that the reaction of bromide ion with hydroxyl radical dominated in the overall reaction from bromide ion to bromate ion in the continuous flow reactor.  相似文献   

12.
The degradation of three polycyclic aromatic hydrocarbons (PAHs): benzo[a]pyrene (BAP), chrysene (CHR), and fluorene (FLU) in aqueous solution using ozone was investigated. The influence of pH of the reaction mixture, ozone concentration, and the presence of a radical scavenger on the reaction rate was determined. The highest rate of PAHs disappearance was achieved in acidic solutions. The radical scavenger, tert-butanol, effectively inhibited the rate of PAHs destruction. The rate constants of direct reaction of PAHs with ozone were calculated and they were equal to (3.32 ± 0.21) × 104; (1.10 ± 0.15) × 104 and 44.8 ± 1.1 M?1s?1 for BAP, CHR, and FLU, respectively. The contributions of direct ozonolysis, and radical reaction to PAHs oxidation in ozonation processes, were evaluated.  相似文献   

13.
The kinetics of oxidation with ozone of 1,3,6‐naphthalenetrisulfonic acid was analysed by studying the influence of different experimental parameters such as the concentration of tert‐butyl alcohol (2‐methyl‐2‐propanol), initial concentration of the acid, pH, and temperature. The rate constant of the direct reaction at 25 °C was calculated (kD = 6.72 M ?1s?1). The constant of the free radical reaction was determined with the competitive kinetics method, using sodium 4‐chlorobenzoate as reference compound, obtaining a value of kOH = 3.7 × 109 M ?1s?1. It was demonstrated that even at very acid pH values, 80% of the 1,3,6‐naphthalenetrisulfonic acid was degraded by free radical reactions, so that the ozonation of this acid may be considered an advanced oxidation process. © 2002 Society of Chemical Industry  相似文献   

14.
Dipyridamole [2,6-bis-diethanolamino-4,8-dipiperidinopyrimido-(5,4-d) pyrimidine], a well known platelet aggregation inhibitor, shows powerful hydroxyl radical scavenging activity by inhibiting OH-dependent salicylate and deoxyribose degradation. Steady-state competition kinetics experiments with deoxyribose were carried out to evaluate the second-order rateconstant for the reaction between hydroxyl radical and dipyridamole. OH· radicals were generated either by a Fenton-type reaction or by X-ray irradiation of water solutions. A second-order rate constant k(Dipyridamole+OH·) of 1.72±0.11×1010M−1 s−1 and of 1.54±0.15×1010 M−1 s−1 was measured by Fenton chemistry and by radiation chemistry, respectively. Mannitol was used as an internal standard for hydroxyl radicals in steady-state competition experiments with deoxyribose. A rate constant k(Mannitol+OH·) of 1.58±0.13×109 M−1 s−1 and 1.88±0.14×109 M−1 s−1 was measured in the Fenton model and in the water radiolysis system, respectively. Both these rate constants are in good agreement with the published data obtained by the “deoxyribose assay” and by pulse radiolysis.  相似文献   

15.
For real-time control of ozonation processes in water works, a sequencing batch reactor was constructed to measure the ozone decay rate constant (kO3) in short time intervals of about 15 min. The batch reactor is filled during the production process, immediately after dissolving ozone in water by a static mixer. On the basis of kO3 and the initial ozone concentration ([O3]0), and the experimentally determined ratio of the concentrations of ?OH radicals to ozone (Rct), the degradation of micropollutants in ozone reactors (modeled as Continuously Stirred Tank Reactors - CSTRs) were calculated for compounds with known reaction rate constants with ozone and ?OH radicals. Calculated degradation of atrazine, iopromide, benzotriazole and acesulfame are in good agreement with measured data. For acesulfame the following rate constants were determined in this study at 20 oC: reaction rate constant with ozone = 88 M?1s?1, reaction rate constant with ?OH radical = 4.55?×?109 M?1s?1. For the ozone reaction an activation energy of 35 kJ/mol was determined. Similarly to micropollutants, the relative inactivation of microorganisms (N/N0) can be calculated based on the inactivation rate constant for ozone and if applicable the lag phase. The pI-value (=??logN/N0) was introduced and implemented in the process management system to calculate online the log inactivation of reference microorganisms such as B. subtilis spores. The system was tested for variation of pH (6.5–8.5), DOC (1.2–4.2 mg/L) flowrate 3.2–12 m3/h and temperature (5.7–9 oC). Furthermore, a given pI-value, e.g. 1 for a 1-log inactivation of B. subtilis spores, can be set as control parameter in the process management system. The ozone gas flow is then adjusted until the set pI-value is reached. The process control concept was validated with B. subtilis spores. Generally, a good agreement was found between calculated and measured inactivation data. It was also demonstrated, that a constant ozone residual may lead to insufficient disinfection or overdosing of ozone. The new process control concept for ozonations based on onsite measurement of the ozone decay rate constant and the pI-value allows to assess disinfection and degradation processes quantitatively in real-time.  相似文献   

16.
The kinetics and products of the reaction of ozone with specific amino acids, peptides, and proteins are reviewed based on studies reported in the literature. Ozone reacts mainly with the unprotonated amino group of the acids and the second-order ozone rate constants for these reactions, except for cysteine, methionine, and tryptophan, vary by about two-orders from 2.6?×?104 to 4.4?×?106 M?1s?1. The site of attack on cysteine and methionine by O3 is at the sulfhydryl rather than the amino group to give sequential O-atom addition products. The order of reactivity for the oxidation of amino acids by O3 at pH 8 is cysteine > tryptophan ≈ methionine > phenylalanine ≈ histidine > others, with half-lives mostly in the range of milliseconds to tens of seconds (1 mg L-1 O3 dose). Reactions of O3 with aliphatic amino acids form nitrate, ammonia, and one or two carbon atom-containing carbonyl and carboxylic byproducts. In the ozonolysis of peptides and proteins, oxidation by O3 occurs at the tyrosine, tryptophan, histidine, cysteine, and methionine residues. Oxidation of proteins results in changes in their folding ability and tertiary structures.  相似文献   

17.
The elimination of the pesticide imazalil (IMZ) spiked into ultrapure water as well as into wastewater applying ozone (O3) and the identification of transformation products was investigated. O3 under hydroxyl radical suppression conditions reacted rapidly with the aliphatic double bond or the imidazole ring in IMZ, yielding several transformation products by partial oxidation. The structures of four oxidation products not yet described were characterized and identified after liquid chromatography coupled with high resolution, high mass accuracy, mass and tandem mass spectrometry (LC/MS and -MSn) in ultrapure water. For two identified transformation products, generated via direct ozone attack on IMZ, formation pathways were proposed. In wastewater, only two of those transformation products were observed. Kinetics studies for the reaction of IMZ with O3, evaluated by the competition kinetic method, resulted in a second-order rate constant kO3,IMZ ~ (1.02 ± 0.03)?×?105 M?1 s?1 at pH 6.6 ± 0.2, indicating that IMZ is completely transformed during the ozonation process. Tests of acute toxicity were performed applying a solution of IMZ in ultrapure water or treated wastewater to Daphnia magna. In both cases the decrease of toxicity was observed after ozone treatment.  相似文献   

18.
Reaction of H atoms with glutathione leads rapidly to H + RSSR → RS · + RSH. The first observed product is RS, the spectrum of which is obtained. The spectrum of the RS?SR radical was obtained by direct attack of e?aq on glutathione. The rate constants of these processes were also measured. ke?aq + RSSR = (2.7 ± 0.3) × 109 M?1 sec?1 kH + RSSR = (1.0 ± 0.2) × 1010 M?1 sec?1 When the OD of RS?SR is plotted vs pH a titration curve is obtained. This is due to the protonation of RS?SR with a rate constant of 2.6 × 1010 M?1 sec?1 which is probably followed by a cleavage to RS and RSH. In both cases the RSSHR radical cannot be detected. The spectrum attributed to the RSSHR radical is more likely to be that of RS.  相似文献   

19.
Ampicillin (AP) is a penicillin-type antibiotic and one of the most widely used bacteriostatic antibiotics in human and veterinary medicine. A kinetic study was performed under different pH conditions (5, 7.2, and 9) to determine the degradation efficiency of AP by ozonation. The second-order rate constants for the direct reaction of AP with ozone were measured to be 2.2 ?5.4×105 M?1s?1 under the pH conditions tested. The rate constants were greater at higher pH. The potential toxicity of the AP intermediates formed after ozonation under the various pH conditions were examined using a bioluminescence assay on Vibrio fischeri species. The biodegradability of the AP degraded products was also determined by measuring the BOD5/COD of the ozonated samples under the different pH conditions. A lower biodegradability and acute toxicity was observed at the lowest pH (pH 5). These results suggest that higher pH conditions are needed for the removal of AP by ozonation in order to mitigate the residual toxicity that can remain even after complete removal of the parent compound by ozonation.  相似文献   

20.
(N1E,N4E)-N1,N4-bis(pyridin-2-yl) ethylene benzene-1,4-diamine (BPEBD) was synthesized by condensation of 2-acetyl pyridine and 1,4-diaminobenzene and its efficiency as a catalyst in Cu-based atom transfer radical polymerizations (ATRP) of methyl methacrylate (MMA) and styrene (S) was investigated. Linear first-order kinetic plots were obtained. However, there were induction periods. The apparent rate constant values of ATRP of MMA with CuCl/BPEBD catalyst system in toluene were found to be between 2.10 × 10?5 and 9.83 × 10?5 s?1, while they were between 6.67 × 10?6 and 3.30 × 10?5 s?1 in the case of acetonitrile, indicating the presence of a low radical concentration throughout the polymerizations. Low apparent rate constant values denote a good control over ATRP in general. Apparent rate constant vs [ligand]/[catalyst] ratio plots showed a maximum at the [ligand]/[catalyst] ratio of 1. In the ATRP of MMA in toluene, M n,GPC values increased linearly with conversion and these molecular weight values were close to M n,th in comparison to that of in acetonitrile. In the polymerization of S, the control of molecular weights was not good, although the reactions were first-order kinetics. Cyclic voltammetry measurements confirmed that CuCl/BPEBD complex in acetonitrile gives quasi-reversible redox couples, and copper (I) centers in CuCl/BPEBD binuclear catalyst complexes are readily oxidized and it potentially suits to facile ATRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号