首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The implementation of traditional sensors is a drawback when investigating mass transfer phenomena within microstructured devices, since they disturb the flow and reactor characteristics. An Arduino based slider setup is developed, which is equipped with a computer-vision system to track gas–liquid slug flow. This setup is combined with an optical analytical method allowing to compare experimental results against CFD simulations and investigate the entire lifetime of a single liquid slug with high spatial and temporal resolution. Volumetric mass transfer coefficients are measured and compared with data from literature and the mass transfer contribution of the liquid film is discussed.  相似文献   

2.
The aim of the present study was to develop a computational fluid dynamics (CFD) model to study the effect of slug flow on the surface shear stress in a vertical tubular membrane. The model was validated using: (1) surface shear stresses, measured using an electrochemical shear probe and (2) gas slug (Taylor bubble) rising velocities, measured using a high speed camera. The length of the gas slugs and, therefore, the duration of a shear event, was observed to vary substantially due to the coalescing of gas slugs as they travelled up the tube. However, the magnitude of the peak surface shear stress during a shear event was not observed to vary significantly. The experimental conditions significantly affected the extent to which the gas slugs coalesced. More coalescing between gas slugs was typically observed for the experiments performed with higher gas flow rates and lower liquid flow rates. Therefore, the results imply that the frequency of shear events decreases at higher gas flow rates and lower liquid flow rates.Shear stress histograms (SSH) were used as a simple approach to compare the different experimental conditions investigated. All conditions resulted in bi-modal distributions: a positive surface shear peak, caused by the liquid slug, and a negative shear peak caused by the gas slugs. At high gas flow rates and at low liquid flow rates, the frequency of the shear stresses in both the negative and positive peaks were more evenly distributed. For all cases, increasing the liquid flow rate and decreasing the gas flow rate tends to result in a predominant positive peak. These results are of importance since conditions that promote evenly distributed positive and negative peaks, are likely to promote better fouling control in membrane system. At high liquid and low gas flow rates, the frequencies obtained numerically and experimentally were found to be similar, deviating by less than approximately 10%. However, at high gas and low liquid flow rates, the differences were slightly higher, exceeding 20%. Under these conditions, the CFD model simulations over predicted the shear stresses induced by gas slugs. Nonetheless, the results indicate that the CFD model was able to accurately simulate shear stresses induced by gas slugs for conditions of high liquid and low gas flow rates.  相似文献   

3.
This paper reports mixing characteristics inside a microfluidic liquid slug using the computational fluid dynamics (CFD) simulations. Each slug is modeled as a single-phase flow domain. Slug-based microfluidics offers rapid mixing by internal circulation and transport with narrow residence time distribution, making it suitable for precise reaction and mixing operations. Miniaturizing the slug size to microscale allows high interactions between the slug internal fluid and the channel wall, leading to a highly effective internal circulation. However, quantitative understanding of mixing characteristics and the influences of operating parameters on mixing rate is crucial for the design of a liquid slug that ensures desired mixing rates. The simulation results provide insights into the influences of operating parameters on slug-based mixing rates. Based on the simulation results, the modified Peclet number, , is proposed for designing mixing in liquid slugs. A novel method using Pe* to estimate mixing rates and design liquid slugs to obtain desired mixing rates is discussed. Using this method, both short (ms) and long (min) mixing timescales can be accessed in the same microfluidic device by simply varying the slug velocity.  相似文献   

4.
The aim of the work presented was to clarify the existence of a wall film and its influence on the hydrodynamics of liquid–liquid slug flow capillary microreactor.The methodology of the laser induced fluorescence (LIF) was adopted for visualisation purposes. The measurement of the light intensity profiles revealed a fully developed wall film for a variety of aqueous–organic two-phase systems in glass and PTFE capillaries of 1 mm internal diameter. In addition an acid as a quenching agent enabled the observation of the internal circulation patterns within the liquid slugs, as the fluorescent dye was deactivated by the acid diffusing in from the dye-free phase. A well-defined internal circulation pattern was always present in the wetting phase, i.e. that forming the wall film, leading to uniform mixing in the slugs of this phase. Stagnant zones and local circulation vortices, indicated by variations in the concentrations of the quenched dye, were observed in the non-wetting dispersed phase. These more complex flow structures varied little with the slug velocity, but were strongly dependent on the physical properties of the liquid–liquid system. To predict slug shape and hydrodynamics within the liquid slugs, CFD simulations were carried out using the volume-of-fluid method (VOF) based on the incompressible Navier–Stokes equation with appropriate boundary conditions between the two phases. The slug generation process was studied in a T-junction with 1 mm internal diameter inlets. The implementation of the wetting contact angle, measured in the visualisation experiments for the various systems, led to realistic slug lengths and shapes. The velocity vector plot indicated a fully developed internal circulation pattern within the simulated slugs. Calculations for a single slug with a non-wetting condition gave rise to a wall film in the simulated system.The results obtained demonstrate the significance of the wall film in the hydrodynamics and mass transfer liquid–liquid slug flow and reveal the presence of hitherto unsuspected complex patterns in place of simple single Taylor vortex flow assumed in the past.  相似文献   

5.
许敏  刘辉  王红霞 《工业催化》2018,26(5):127-132
以石脑油为原料,采用催化裂解六集总动力学模型,建立描述结构化反应器内催化裂解的反应器数学模型,并利用CFD软件对结构化反应器内的石脑油催化裂解性能进行数值模拟。通过改变孔道直径、反应器长度以及反应器内温度、气体入口速率考察反应器结构尺寸和反应条件对目标产物乙烯、丙烯的收率及石脑油转化率的影响。结果表明,反应器孔道直径的增加,目标产物收率减小,反应器长度20 mm时反应完全,升高反应温度和增大入口速率均有利于目标产物的生成。在入口温度680 ℃和入口速率0.4 m·s-1条件下,石脑油转化率92%,乙烯收率19.3%,丙烯收率23.1%。而在相同反应条件下的固定床反应器中乙烯收率10.3%,丙烯收率13.3%,石脑油转化率80.0%。  相似文献   

6.
Understanding hydrodynamics of tubular loop reactors is crucial in proper scale-up and design of these reactors. Computational fluid dynamics (CFD) models have shown promise in gaining this understanding. In this paper, a three-dimensional (3D) CFD model, using a Eulerian-Eulerian two-fluid model incorporating the kinetic theory of granular flow, was developed to describe the steady-state liquid-solid two-phase flow in a tubular loop propylene polymerization reactor composing of loop and axial flow pump. Corresponding simulations were carried out in the commercial CFD code Fluent. The entire flow field in the loop reactor was calculated by the model. The predicted pressure gradient data were found to agree well with the classical calculated data. Furthermore, the model was used to investigate the influences of the circulation flow velocity and the sold particle size on the solid hold-up. The simulation results showed that the solid hold-up has a relatively uniform distribution in the loop reactor at small particles in volume and high-circulation flow velocities.  相似文献   

7.
Catalytic reactors have been essential for chemical engineering process, and different designs of reactors in multi-scales have been previously studied. Computational fluid dynamics (CFD) utilized in reactor designs have been gaining interest due to its cost-effective advantage in designing the actual reactors before its construction. In this work, butadiene synthesis via oxidative dehydrogenation (ODH) of n-butene using tubular reactor was used as a case study in the CFD model. The effects of coolant and reactor diameter were investigated in assessing the reactor performance. Based on the results of the CFD model, the conversion and selectivity were 86.5% and 59.5% respectively in a fixed bed reactor under adiabatic condition. When coolants were used in a tubular reactor, reactor temperature profiles showed that solar salt had lower temperature gradients inside the reactor than the cooling water. Furthermore, higher conversion (90.9%) and selectivity (90.5%) were observed for solar salt as compared to the cooling water (88.4% for conversion and 86.3% for selectivity). Meanwhile, reducing the reactor diameter resulted in smaller temperature gradients with higher conversion and selectivity.  相似文献   

8.
针对化工生产过程中需要根据堆积床的流动特性来对反应器进行设计优化,提出了采用离散元素方法(DEM)和计算流体动力学(CFD)耦合方法,研究了不同物料流速下管径-粒径比为6.33(符合高管径-粒径比D/d>4)的堆积床反应器内部流动特性.通过数值模拟空隙率、压降、压力、流速、流线分布规律,并与常用经验方法结果相对比,验证...  相似文献   

9.
The present work focuses on the non-Newtonian liquid drag reduction by gas injection. Two regimes are taken in consideration: fully stratified gas shear-thinning liquid flow and gas shear-thinning liquid slug flow regimes.Predictions of drag reduction ratio and holdup are presented for the stratified flow of gas and non-Newtonian Ostwald-de Waele liquid. Fully stratified flow is considered and the approach developed in Taitel and Dukler (1976) is used. For these regimes, CMC (CarboxyMethyl Cellulose) solution is used in order to investigate the behaviour of the gas and non-Newtonian liquids in horizontal pipes. Results have been reformulated and an extension to interfacial Andreussi and Persen (1987) correlation has been carried out for stratified regimes.For slug flow regimes, the mechanistic slug unit model is adopted in order to estimate the pressure gradients along the slug unit. The slug unit model is rearranged and reinterpreted as inviscid Burgers's equation for incompressible phases.For both stratified and slug flow regimes, three dimensional CFD (computational fluid dynamics) simulations were performed in order to compare the drag reduction ratio and pressure gradients. In stratified flows, CFD is also used in an attempt to evaluate the liquid wall friction factor and to compare the obtained values with those given by empirical standard correlations.  相似文献   

10.
Computational fluid dynamics (CFD) simulation of the hydrodynamics of slug flow which is generated by air sparging in a vertical tubular membrane has been investigated. The results of simulation have been reported in the form of parameters such as shape, velocity profile, surface shear stresses and gas slug (Taylor bubble) rising velocities, and evaluated with experimental data which were presented in previous articles. This study showed that CFD modeling is able to accurately simulate the shape and velocity field around the gas slugs. Also the shear stress induced by slug flow passage and rising velocity of gas slugs for high-velocity liquid and low-velocity gas fit appropriately to values in reference data. Simulation results for gas slug rising velocity showed about 0.35–9% error in the different conditions investigated in respect to experimental data.  相似文献   

11.
Microreactor technology, an important method of process intensification, offers numerous potential benefits for the process industries. Fluid–fluid reactions with mass transfer limitations have already been advantageously carried out in small-scale geometries. In liquid–liquid microstructured reactors (MSR), alternating uniform slugs of the two-phase reaction mixture exhibit well-defined interfacial mass transfer areas and flow patterns. The improved control of highly exothermic and hazardous reactions is also of technical relevance for large-scale production reactors. Two basic mass transfer mechanisms arise: convection within the individual liquid slugs and diffusion between adjacent slugs. The slug size in liquid–liquid MSR defines the interfacial area available for mass transfer and thus the performance of the reactor. There are two possibilities in a slug flow MSR depending on the interaction of the liquids with the solid wall material: a dispersed phase flow in the form of an enclosed slug in the continuous phase (with film—complete wetting of the continuous phase) and an alternate flow of two liquids (without film—partial wetting of the continuous phase). In the present work, a computational fluid dynamics (CFD) methodology is developed to simulate the slug flow in the MSR for both types of flow systems. The results were validated with the experimental results of Tice et al. (J.D. Tice, A.D. Lyon and R.F. Ismagilov, Effects of viscosity on droplet formation and mixing in microfluidic channels, Analytica Chimica Acta507 (1) (2004), pp. 73–77.).  相似文献   

12.
The rapid development of microfabrication techniques creates new opportunities for applications of microchannel reactor technology in chemical reaction engineering. The extremely large surface-to-volume ratio and the short transport path in microchannels enhance heat and mass transfer dramatically, and hence provide many potential opportunities in chemical process development and intensification. Multiphase reactions involving gas/liquid reactants with a solid as a catalyst are ubiquitous in chemical and pharmaceutical industries. The hydrodynamics of the flow affects the reactor performance significantly; therefore it plays a prominent role in reactor design. For gas/liquid two-phase flow in a microchannel, the Taylor slug flow regime is the most commonly encountered flow pattern. The present study deals with the numerical simulation of the Taylor flow in a microchannel, particularly on gas and liquid slugs. A T-junction empty microchannel with varying cross-sectional width (0.25, 0.5, 0.75, 1, 2 and 3 mm) served as the model micro-reactor, and a finite volume based commercial computational fluid dynamics (CFD) package, FLUENT, was adopted for the numerical simulation. The gas and liquid slug lengths at various operating and fluid conditions were obtained and found to be in good agreement with the literature data. Several correlations in the T-junction microchannel were developed based on the simulation results. The slug flows for other geometries and inlet conditions were also studied.  相似文献   

13.
This study presents the results of a Computational Fluid Dynamics (CFD) simulation of two-phase medium viscosity oil-air flow in a 50.8?mm internal diameter horizontal pipe. Void fraction and pressure gradient predictions were validated using experimental data for four different oil viscosities (0.039, 0.06, 0.108 and 0.166?Pa s) and different flow rates varying from 0.1 to 2.9?m/s for the gas phase and from 0.01 to 2.95?m/s for the liquid phase, where four flow patterns were predicted (stratified, dispersed bubble, bubble elongated and slug flow). The obtained results of void fraction and pressure gradient presented a mean relative error of 30.04 and 21.38%, respectively. Furthermore, the CFD results were compared against 66 empirical correlations and predictions from OLGA. It was found that between the three studied methods (CFD, OLGA and empirical correlations) the CFD model outperformed the other two methods regarding the predicted flow patterns, pressure gradients and void fractions on most cases.  相似文献   

14.
The main topic of this paper is to describe the effect of geometrical parameters on mixing time in a reactor with an internal circulation loop. The design of the draft tube inside the reactor is an important geometric parameter and has a big influence on two phase hydrodynamics as well as on mass transfer in the reactor. In the first section, the validation of the selected mathematical model is carried out. The results of experimental measurements (liquid velocity and gas hold-up) obtained on the laboratory scale reactor are compared with the CFD simulations. The CFD simulation (bubbly flow and mass transfer models) was made using COMSOL Multiphysics 3.5a. The results of the numerical simulation are in good agreement with the experimental data. In the second section, the study of mixing in the reactor is described with the new geometry of the draft tube. The standard experimental techniques for testing mixing processes are quite problematic because common tracers (soluble salts) have significant influence on two phase hydrodynamics inside the reactor. Though, an alternative nontrivial method had to be used. The split of the draft tube into two or three section has a significant effect on mixing (mass transfer) in the reactor.  相似文献   

15.
This paper documents experiments and CFD simulations of the hydrodynamics of our two-phase (water, air) laboratory internal loop airlift reactor (40 l). The experiments and simulations were aimed at obtaining global flow characteristics (gas holdup and liquid interstitial velocity in the riser and in the downcomer) in our particular airlift configurations. The experiments and simulations were done for three different riser tubes with variable length and diameter. Gas (air) superficial velocities in riser were in range from 1 to 7.5 cm/s. Up to three circulation regimes were experimentally observed (no bubbles in downcomer, bubbles in downcomer but not circulating, and finally the circulating regime). The primary goal was to test our CFD simulation setup using only standard closures for interphase forces and turbulence, and assuming constant bubble size is able to capture global characteristics of the flow for our experimental airlift configurations for the three circulation regimes, and if the simulation setup could be later used for obtaining the global characteristic for modified geometries of our original airlift design or for different fluids. The CFD simulations were done in commercial code Fluent 6.3 using algebraic slip mixture multiphase model. The secondary goal was to test the sensitivity of the simulation results to different closures for the drag coefficient and the resulting bubble slip velocity and also for the turbulence. In addition to the simulations done in Fluent, simulation results using different code (CFX 12.1) and different model (full Euler–Euler) are also presented in this paper. The experimental measurements of liquid interstitial velocity in the riser and in the downcomer were done by evaluating the response to the injection of a sulphuric acid solution measured with pH probes. The gas holdup in the riser and downcomer was measured with the U-tube manometer. The results showed that the simulation setup works quite well when there are no bubbles present in the downcomer, and that the sensitivity to the drag closure is rather low in this case. The agreement was getting worse with the increase of gas holdup in the downcomer. The use of different multiphase model in the different code (CFX) gave almost the same results as the Fluent simulations.  相似文献   

16.
王丽军  吴玮  李希 《化工学报》2011,62(10):2713-2720
对单级和双级T形微通道结构中水和甲苯两相流动与传质进行了实验与模拟,拍摄了两相流动流型变化,通过测量醋酸在水和甲苯两相的分配获得了T形微通道中液液两相传质系数.采用VOF流体力学模型模拟了T形微通道中弹状流的形成和变化过程,准确预测了弹状尺寸.研究发现,无论流动处于弹状流还是并行流,在保持相同停留时间条件下,双级T形微...  相似文献   

17.
The computational fluid dynamics (CFD) approach was adopted to simulate benzoyl peroxide (BPO)‐initiated styrene polymerization in a laboratory‐scale continuous stirred‐tank reactor (CSTR). The CFD results revealed the effects of non‐homogeneity and the short‐circuiting of the unreacted styrene and initiator on the reactor performance. The study also investigated the effects of the impeller speed and the residence time on the conversion and the flow behavior of the system. The CFD simulation showed that intense mixing remained confined to a small region near the impeller. With increasing impeller speed, it was found that the perfectly mixed region near the impeller expanded, thus reducing non‐homogeneity. Different contours were generated and exhibited the effect of the mixing parameters on the propagation rate and styrene conversion. The monomer and initiator conversions predicted with the CFD model were compared to those obtained with a CSTR model. The CFD model accounts for the non‐ideality behavior of the polymerization reactor, and hence conversion predictions are more realistic.  相似文献   

18.
The computational fluid dynamics (CFD) has been recently recognised to be a very powerful tool for analysis of contactor behaviour or for reactor design, both being of considerable interest to chemical engineers. In this paper, a model of turbulent two-fluid flow is applied to the simulation of hydrodynamics in discs and doughnuts pulsed columns. The task concerns a two-phase countercurrent turbulent non-stationary flow in a complex geometry with high volume fraction of the dispersed phase in some areas resulting in global hold-up up to 30%. The simulations have been performed using the CFD software ASTRID developed by Electricité de France (EDF). Concerning hydrodynamic parameters (continuous phase velocity, turbulent kinetic energy, hold-up), the results follow the tendencies of the experimental knowledge. The model validation is based on the mean hold-up determination upon a representative column compartment, which is compared to experimental data. The work demonstrates a possibility for prediction of the mean column hold-up using the Eulerian approach.  相似文献   

19.
A functional electrocatalytic membrane reactor (ECMR) was performed for the electrocatalytic oxidation of 2,2,3,3-tetrafluoro-1-propanol (TFP) into high value-added sodium 2,2,3,3-tetrafluoropropionate (STFP).A computational fluid dynamics (CFD) technique was applied to simulate the hydrodynamic distributions along a tubular ECMR so as to provide guidance for the design and optimization of ECMR.Two-dimensional simulation with porous media model was employed to predict the properties of fluid dynamics in ECMR.The experimental investigation was carried to confirm the CFD simulation.Results showed that a uniform distribution of permeate velocity along the tubular reactor with short length and large diameter could be obtained.TFP conversion of 97.7%,the selectivity to STFP of 99.9% and current efficiency of 40.1% were achieved from the ECMR with a length of 40 mm and an inside diameter of 53 mm.The simulations were in good agreement with the experimental results.  相似文献   

20.
In this work the applicability of the micro-channel reactor technique to the production of promising platform chemical 5-hydroxymethyl furan (HMF) from fructose in aqueous solution is systemically investigated by performing CFD simulations. Influential factors including solvents, residence time distribution of reaction mixtures, heat transfer conditions and micro-channel configurations are evaluated in terms of the reaction performance indices, i.e., conversion of fructose, HMF selectivity and yield. A scale-up method from a single channel to a multiple channel reactor is also proposed. It is demonstrated that: 1) at the single channel scale, controlling residence times and temperature distribution of the reaction mixture within the channel is crucial for enhancing the reaction performance, while different channel configurations lead to marginal improvements; 2) for the scaling-up of the reaction process, a reactor module containing 15 circular parallel channels could be used as module blocks, which can be stacked one by one to meet the required reactor performance and production capacity. The present results show that micro-reactors are quite suitable for HMF production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号